988 resultados para Robot applications
Resumo:
The robot control problem is discussed with regard to controller implementation on a multitransputer array. Some high-performance aspects required of such controllers are described, with particular reference to robot force control. The implications for the architecture required for controllers based on computed torque are discussed and an example is described. The idea of treating a transputer array as a virtual bus is put forward for the implementation of fast real-time controllers. An example is given of controlling a Puma 560 industrial robot. Some of the practical considerations for using transputers for such control are described.
Resumo:
This thesis describes a form of non-contact measurement using two dimensional hall effect sensing to resolve the location of a moving magnet which is part of a ‘magnetic spring’ type suspension system. This work was inspired by the field of Space Robotics, which currently relies on solid link suspension techniques for rover stability. This thesis details the design, development and testing of a novel magnetic suspension system with a possible application in space and terrestrial based robotics, especially when the robot needs to traverse rough terrain. A number of algorithms were developed, to utilize experimental data from testing, that can approximate the separation between magnets in the suspension module through observation of the magnetic fields. Experimental hardware was also developed to demonstrate how two dimensional hall effect sensor arrays could provide accurate feedback, with respects to the magnetic suspension modules operation, so that future work can include the sensor array in a real-time control system to produce dynamic ride control for space robots. The research performed has proven that two dimensional hall effect sensing with respects to magnetic suspension is accurate, effective and suitable for future testing.
Resumo:
This paper presents a novel mobile sink area allocation scheme for consumer based mobile robotic devices with a proven application to robotic vacuum cleaners. In the home or office environment, rooms are physically separated by walls and an automated robotic cleaner cannot make a decision about which room to move to and perform the cleaning task. Likewise, state of the art cleaning robots do not move to other rooms without direct human interference. In a smart home monitoring system, sensor nodes may be deployed to monitor each separate room. In this work, a quad tree based data gathering scheme is proposed whereby the mobile sink physically moves through every room and logically links all separated sub-networks together. The proposed scheme sequentially collects data from the monitoring environment and transmits the information back to a base station. According to the sensor nodes information, the base station can command a cleaning robot to move to a specific location in the home environment. The quad tree based data gathering scheme minimizes the data gathering tour length and time through the efficient allocation of data gathering areas. A calculated shortest path data gathering tour can efficiently be allocated to the robotic cleaner to complete the cleaning task within a minimum time period. Simulation results show that the proposed scheme can effectively allocate and control the cleaning area to the robot vacuum cleaner without any direct interference from the consumer. The performance of the proposed scheme is then validated with a set of practical sequential data gathering tours in a typical office/home environment.
Resumo:
Developing successful navigation and mapping strategies is an essential part of autonomous robot research. However, hardware limitations often make for inaccurate systems. This project serves to investigate efficient alternatives to mapping an environment, by first creating a mobile robot, and then applying machine learning to the robot and controlling systems to increase the robustness of the robot system. My mapping system consists of a semi-autonomous robot drone in communication with a stationary Linux computer system. There are learning systems running on both the robot and the more powerful Linux system. The first stage of this project was devoted to designing and building an inexpensive robot. Utilizing my prior experience from independent studies in robotics, I designed a small mobile robot that was well suited for simple navigation and mapping research. When the major components of the robot base were designed, I began to implement my design. This involved physically constructing the base of the robot, as well as researching and acquiring components such as sensors. Implementing the more complex sensors became a time-consuming task, involving much research and assistance from a variety of sources. A concurrent stage of the project involved researching and experimenting with different types of machine learning systems. I finally settled on using neural networks as the machine learning system to incorporate into my project. Neural nets can be thought of as a structure of interconnected nodes, through which information filters. The type of neural net that I chose to use is a type that requires a known set of data that serves to train the net to produce the desired output. Neural nets are particularly well suited for use with robotic systems as they can handle cases that lie at the extreme edges of the training set, such as may be produced by "noisy" sensor data. Through experimenting with available neural net code, I became familiar with the code and its function, and modified it to be more generic and reusable for multiple applications of neural nets.
Resumo:
This work presents some improvements regarding to the autonomous mobile robot Emmy based on Paraconsistent Annotated Evidential Logic ET. A discussion on navigation system is presented.
Resumo:
Multisensor data fusion is a technique that combines the readings of multiple sensors to detect some phenomenon. Data fusion applications are numerous and they can be used in smart buildings, environment monitoring, industry and defense applications. The main goal of multisensor data fusion is to minimize false alarms and maximize the probability of detection based on the detection of multiple sensors. In this paper a local data fusion algorithm based on luminosity, temperature and flame for fire detection is presented. The data fusion approach was embedded in a low cost mobile robot. The prototype test validation has indicated that our approach can detect fire occurrence. Moreover, the low cost project allow the development of robots that could be discarded in their fire detection missions. © 2013 IEEE.
Resumo:
Laser Welding (LW) is more often used in manufacturing due to its advantages, such as accurate control, good repeatability, less heat input, opportunities for joining of special materials, high speed, capability to join small dimension parts etc. LW is dedicated to robotized manufacturing, and the fabrication cells are using various level of flexibility, from specialized robots to very flexible setups. This paper features several LW applications using two industrially-scaled manufacturing cells at UPM Laser Centre (CLUPM) of Polytechnical University of Madrid (Universidad Politécnica de Madrid). The one dedicated to Remote Laser Welding (RLW) of thin sheets for automotive and other sectors uses a CO2 laser of 3500 W. The second has a high flexibility, is based on a 6-axis ABB robot and a Nd:YAG laser of 3300 W, and is meant for various laser processing methods, including welding. After a short description of each cell, several LW applications experimented at CLUPM and recently implemented in industry are briefly presented: RLW of automotive coated sheets, LW of high strength automotive sheets, LW vs. laser hybrid welding (LHW) of Double Phase steel thin sheets, and LHW of thin sheets of stainless steel and carbon steel (dissimilar joints). The main technological issues overcame and the critical process parameters are pointed out. Conclusions about achievements and trends are provided.
Resumo:
Ultrasonic transducers have often been used in the development of sensory systems for robotics applications. In most cases, these sensory systems are based on the determination of times of flight for signals from every transducer. In this work we have used piezoresistive and piezoelectric materials to measure the instant and position collision in metallic structures by using the difference of the times of propagation of an acoustic wave when it is produced over a ferromagnetic (iron, steel or another material) based structure. An immediate application of the proposed method is the detection and location of impacts over the metallic links of an industrial robot or the collision position in a metallic structure for an automated inspection
Resumo:
Force sensors are used when interaction tasks are carried out by robots in general, and by climbing robots in particular. If the mechanics and electronics systems are contained inside the own robot, the robot becomes portable without external control. Commercial force sensors cannot be used due to limited space and weight. By selecting the links material with appropriate stiffness and placing strain gauges on the structure, the own robot flexibility can be used such as force sensor. Thus, forces applied on the robot tip can be measured without additional external devices. Only gauges and small internal electronic converters are necessary. This paper illustrates the proposed algorithm to achieve these measurements. Additionally, experimental results are presented.
Resumo:
Abstract This work is focused on the problem of performing multi‐robot patrolling for infrastructure security applications in order to protect a known environment at critical facilities. Thus, given a set of robots and a set of points of interest, the patrolling task consists of constantly visiting these points at irregular time intervals for security purposes. Current existing solutions for these types of applications are predictable and inflexible. Moreover, most of the previous centralized and deterministic solutions and only few efforts have been made to integrate dynamic methods. Therefore, the development of new dynamic and decentralized collaborative approaches in order to solve the aforementioned problem by implementing learning models from Game Theory. The model selected in this work that includes belief‐based and reinforcement models as special cases is called Experience‐Weighted Attraction. The problem has been defined using concepts of Graph Theory to represent the environment in order to work with such Game Theory techniques. Finally, the proposed methods have been evaluated experimentally by using a patrolling simulator. The results obtained have been compared with previous available
Resumo:
We perform a review of Web Mining techniques and we describe a Bootstrap Statistics methodology applied to pattern model classifier optimization and verification for Supervised Learning for Tour-Guide Robot knowledge repository management. It is virtually impossible to test thoroughly Web Page Classifiers and many other Internet Applications with pure empirical data, due to the need for human intervention to generate training sets and test sets. We propose using the computer-based Bootstrap paradigm to design a test environment where they are checked with better reliability.
Resumo:
This paper proposes a novel robotic system that is able to move along the outside of the oil pipelines used in Electric Submersible Pumps (ESP) and Progressive Cavity Pumps (PCP) applications. This novel design, called RETOV, proposes a light weight structure robot that can be equipped with sensors to measure environmental variables avoiding damage in pumps and wells. In this paper, the main considerations and methodology of design and implementation are discussed. Finally, the first experimental results that show RETOV moving in vertical pipelines are analyzed.
Resumo:
Purpose – Reducing energy consumption in walking robots is an issue of great importance in field applications such as humanitarian demining so as to increase mission time for a given power supply. The purpose of this paper is to address the problem of improving energy efficiency in statically stable walking machines by comparing two leg, insect and mammal, configurations on the hexapod robotic platform SILO6. Design/methodology/approach – Dynamic simulation of this hexapod is used to develop a set of rules that optimize energy expenditure in both configurations. Later, through a theoretical analysis of energy consumption and experimental measurements in the real platform SILO6, a configuration is chosen. Findings – It is widely accepted that the mammal configuration in statically stable walking machines is better for supporting high loads, while the insect configuration is considered to be better for improving mobility. However, taking into account the leg dynamics and not only the body weight, different results are obtained. In a mammal configuration, supporting body weight accounts for 5 per cent of power consumption while leg dynamics accounts for 31 per cent. Originality/value – As this paper demonstrates, the energy expended when the robot walks along a straight and horizontal line is the same for both insect and mammal configurations, while power consumption during crab walking in an insect configuration exceeds power consumption in the mammal configuration.
Resumo:
One of the major challenges in evolutionary robotics is constituted by the need of the robot being able to make decisions on its own, in accordance with the multiple tasks programmed, optimizing its timings and power. In this paper, we present a new automatic decision making mechanism for a robot guide that allows the robot to make the best choice in order to reach its aims, performing its tasks in an optimal way. The election of which is the best alternative is based on a series of criteria and restrictions of the tasks to perform. The software developed in the project has been verified on the tour-guide robot Urbano. The most important aspect of this proposal is that the design uses learning as the means to optimize the quality in the decision making. The modeling of the quality index of the best choice to perform is made using fuzzy logic and it represents the beliefs of the robot, which continue to evolve in order to match the "external reality”. This fuzzy system is used to select the most appropriate set of tasks to perform during the day. With this tool, the tour guide-robot prepares its agenda daily, which satisfies the objectives and restrictions, and it identifies the best task to perform at each moment. This work is part of the ARABOT project of the Intelligent Control Research Group at the Universidad Politécnica de Madrid to create "awareness" in a robot guide.
Resumo:
This paper describes an approach to solve the inverse kinematics problem of humanoid robots whose construction shows a small but non negligible offset at the hip which prevents any purely analytical solution to be developed. Knowing that a purely numerical solution is not feasible due to variable efficiency problems, the proposed one first neglects the offset presence in order to obtain an approximate “solution” by means of an analytical algorithm based on screw theory, and then uses it as the initial condition of a numerical refining procedure based on the Levenberg‐Marquardt algorithm. In this way, few iterations are needed for any specified attitude, making it possible to implement the algorithm for real‐time applications. As a way to show the algorithm’s implementation, one case of study is considered throughout the paper, represented by the SILO2 humanoid robot.