998 resultados para Repair composite


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past 20 years, mesoporous materials have been attracted great attention due to their significant feature of large surface area, ordered mesoporous structure, tunable pore size and volume, and well-defined surface property. They have many potential applications, such as catalysis, adsorption/separation, biomedicine, etc. [1]. Recently, the studies of the applications of mesoporous materials have been expanded into the field of biomaterials science. A new class of bioactive glass, referred to as mesoporous bioactive glass (MBG), was first developed in 2004. This material has a highly ordered mesopore channel structure with a pore size ranging from 5–20 nm [1]. Compared to non-mesopore bioactive glass (BG), MBG possesses a more optimal surface area, pore volume and improved in vitro apatite mineralization in simulated body fluids [1,2]. Vallet-Regí et al. has systematically investigated the in vitro apatite formation of different types of mesoporous materials, and they demonstrated that an apatite-like layer can be formed on the surfaces of Mobil Composition of Matters (MCM)-48, hexagonal mesoporous silica (SBA-15), phosphorous-doped MCM-41, bioglass-containing MCM-41 and ordered mesoporous MBG, allowing their use in biomedical engineering for tissue regeneration [2-4]. Chang et al. has found that MBG particles can be used for a bioactive drug-delivery system [5,6]. Our study has shown that MBG powders, when incorporated into a poly (lactide-co-glycolide) (PLGA) film, significantly enhance the apatite-mineralization ability and cell response of PLGA films. compared to BG [7]. These studies suggest that MBG is a very promising bioactive material with respect to bone regeneration. It is known that for bone defect repair, tissue engineering represents an optional method by creating three-dimensional (3D) porous scaffolds which will have more advantages than powders or granules as 3D scaffolds will provide an interconnected macroporous network to allow cell migration, nutrient delivery, bone ingrowth, and eventually vascularization [8]. For this reason, we try to apply MBG for bone tissue engineering by developing MBG scaffolds. However, one of the main disadvantages of MBG scaffolds is their low mechanical strength and high brittleness; the other issue is that they have very quick degradation, which leads to an unstable surface for bone cell growth limiting their applications. Silk fibroin, as a new family of native biomaterials, has been widely studied for bone and cartilage repair applications in the form of pure silk or its composite scaffolds [9-14]. Compared to traditional synthetic polymer materials, such as PLGA and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the chief advantage of silk fibroin is its water-soluble nature, which eliminates the need for organic solvents, that tend to be highly cytotoxic in the process of scaffold preparation [15]. Other advantages of silk scaffolds are their excellent mechanical properties, controllable biodegradability and cytocompatibility [15-17]. However, for the purposes of bone tissue engineering, the osteoconductivity of pure silk scaffolds is suboptimal. It is expected that combining MBG with silk to produce MBG/silk composite scaffolds would greatly improve their physiochemical and osteogenic properties for bone tissue engineering application. Therefore, in this chapter, we will introduce the research development of MBG/silk scaffolds for bone tissue engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is predicted that with increased life expectancy in the developed world, there will be a greater demand for synthetic materials to repair or regenerate lost, injured or diseased bone (Hench & Thompson 2010). There are still few synthetic materials having true bone inductivity, which limits their application for bone regeneration, especially in large-size bone defects. To solve this problem, growth factors, such as bone morphogenetic proteins (BMPs), have been incorporated into synthetic materials in order to stimulate de novo bone formation in the center of large-size bone defects. The greatest obstacle with this approach is that the rapid diffusion of the protein from the carrier material, leading to a precipitous loss of bioactivity; the result is often insufficient local induction or failure of bone regeneration (Wei et al. 2007). It is critical that the protein is loaded in the carrier material in conditions which maintains its bioactivity (van de Manakker et al. 2009). For this reason, the efficient loading and controlled release of a protein from a synthetic material has remained a significant challenge. The use of microspheres as protein/drug carriers has received considerable attention in recent years (Lee et al. 2010; Pareta & Edirisinghe 2006; Wu & Zreiqat 2010). Compared to macroporous block scaffolds, the chief advantage of microspheres is their superior protein-delivery properties and ability to fill bone defects with irregular and complex shapes and sizes. Upon implantation, the microspheres are easily conformed to the irregular implant site, and the interstices between the particles provide space for both tissue and vascular ingrowth, which are important for effective and functional bone regeneration (Hsu et al. 1999). Alginates are natural polysaccharides and their production does not have the implicit risk of contamination with allo or xeno-proteins or viruses (Xie et al. 2010). Because alginate is generally cytocompatible, it has been used extensively in medicine, including cell therapy and tissue engineering applications (Tampieri et al. 2005; Xie et al. 2010; Xu et al. 2007). Calcium cross-linked alginate hydrogel is considered a promising material as a delivery matrix for drugs and proteins, since its gel microspheres form readily in aqueous solutions at room temperature, eliminating the need for harsh organic solvents, thereby maintaining the bioactivity of proteins in the process of loading into the microspheres (Jay & Saltzman 2009; Kikuchi et al. 1999). In addition, calcium cross-linked alginate hydrogel is degradable under physiological conditions (Kibat PG et al. 1990; Park K et al. 1993), which makes alginate stand out as an attractive candidate material for the protein carrier and bone regeneration (Hosoya et al. 2004; Matsuno et al. 2008; Turco et al. 2009). However, the major disadvantages of alginate microspheres is their low loading efficiency and also rapid release of proteins due to the mesh-like networks of the gel (Halder et al. 2005). Previous studies have shown that a core-shell structure in drug/protein carriers can overcome the issues of limited loading efficiencies and rapid release of drug or protein (Chang et al. 2010; Molvinger et al. 2004; Soppimath et al. 2007). We therefore hypothesized that introducing a core-shell structure into the alginate microspheres could solve the shortcomings of the pure alginate. Calcium silicate (CS) has been tested as a biodegradable biomaterial for bone tissue regeneration. CS is capable of inducing bone-like apatite formation in simulated body fluid (SBF) and its apatite-formation rate in SBF is faster than that of Bioglass® and A-W glass-ceramics (De Aza et al. 2000; Siriphannon et al. 2002). Titanium alloys plasma-spray coated with CS have excellent in vivo bioactivity (Xue et al. 2005) and porous CS scaffolds have enhanced in vivo bone formation ability compared to porous β-tricalcium phosphate ceramics (Xu et al. 2008). In light of the many advantages of this material, we decided to prepare CS/alginate composite microspheres by combining a CS shell with an alginate core to improve their protein delivery and mineralization for potential protein delivery and bone repair applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The repair of articular cartilage typically involves the repair of cartilage-subchondral bone tissue defects. Although various bioactive materials have been used to repair bone defects, how these bioactive materials in subchondral bone defects influence the repair of autologous cartilage transplant remains unclear. The aim of this study was to investigate the effects of different subchondral biomaterial scaffolds on the repair of autologous cartilage transplant in a sheep model. Cylindrical cartilage-subchondral bone defects were created in the right femoral knee joint of each sheep. The subchondral bone defects were implanted with hydroxyapatite-β-tricalcium phosphate (HA-TCP), poly lactic-glycolic acid (PLGA)-HA-TCP dual-layered composite scaffolds (PLGA/HA-TCP scaffolds), or autologous bone chips. The autologous cartilage layer was placed on top of the subchondral materials. After three months, the effect of different subchondral scaffolds on the repair of autologous cartilage transplant was systematically studied by investigating the mechanical strength, structural integration and histological responses. The results showed that the transplanted cartilage layer supported by HA-TCP scaffolds had better structural integration and higher mechanical strength than that supported by PLGA/HA-TCP scaffolds. Furthermore, HA-TCP supported cartilage showed higher expression of acid mucosubstances and glycol-amino-glycan (GAG) contents than that supported by PLGA/HA-TCP scaffolds. Our results suggested that the physicochemical properties, including the inherent mechanical strength and material chemistry of the scaffolds, play important roles in influencing the repair of autologous cartilage transplants. The study may provide useful information for the design and selection of proper subchondral biomaterials to support the repair of both subchondral bone and cartilage defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems. Therefore, evolutionary algorithms are adopted as the main technique in solving these problems. The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms. In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems. The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan. This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One limitation of electrospinning stems from the charge build-up that occurs during processing, preventing further fibre deposition and limiting the scaffold overall thickness and hence their end-use in tissue engineering applications targeting large tissue defect repair. To overcome this, we have developed a technique in which thermally induced phase separation (TIPS) and electrospinning are combined. Thick three-dimensional, multilayered composite scaffolds were produced by simply stacking individual polycaprolactone (PCL) microfibrous electrospun discs into a cylindrical holder that was filled with a 3% poly(lactic-co-glycolic acid) (PLGA) solution in dimethylsulfoxide (a good solvent for PLGA but a poor one for PCL). The construct was quenched in liquid nitrogen and the solvent removed by leaching out in cold water. This technique enables the fabrication of scaffolds composed principally of electrospun membranes that have no limit to their thickness. The mechanical properties of these scaffolds were assessed under both quasi-static and dynamic conditions. The multilayered composite scaffolds had similar compressive properties to 5% PCL scaffolds fabricated solely by the TIPS methodology. However, tensile tests demonstrated that the multilayered construct outperformed a scaffold made purely by TIPS, highlighting the contribution of the electrospun component of the composite scaffold to enhancing the overall mechanical property slate. Cell studies revealed cell infiltration principally from the scaffold edges under static seeding conditions. This fabrication methodology permits the rapid construction of thick, strong scaffolds from a range of biodegradable polymers often used in tissue engineering, and will be particularly useful when large dimension electrospun scaffolds are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An innovative cement-based soft-hard-soft (SHS) multi-layer composite has been developed for protective infrastructures. Such composite consists of three layers including asphalt concrete (AC), high strength concrete (HSC), and engineered cementitious composites (ECC). A three dimensional benchmark numerical model for this SHS composite as pavement under blast load was established using LSDYNA and validated by field blast test. Parametric studies were carried out to investigate the influence of a few key parameters including thickness and strength of HSC and ECC layers, interface properties, soil conditions on the blast resistance of the composite. The outcomes of this study also enabled the establishment of a damage pattern chart for protective pavement design and rapid repair after blast load. Efficient methods to further improve the blast resistance of the SHS multi-layer pavement system were also recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adhesively-bonded composite patch repairs over cracked or corrosion-damaged metallic aircraft structures have shown great promise for extending life of ageing structures. This study presents the numerical investigation into the interface behaviour of adhesively-bonded cracked aluminum alloy substrate patched with fibre-reinforced composite material. The adhesive is modelled as an elasto-plastic bilinear material to characterise the debond behaviour, while the defective substrate is regarded as linear elastic continuum. Two typical patch shapes were selected based on information available in the literature. Geometric and material nonlinear analyses for square and octagonal patches were performed to capture peel and shear stresses developed between the substrate and the patch to examine the possibility of interface delamination/debonding. Parametric studies on adhesive thickness and patch thickness were carried out to predict their infuence on damage tolerance of repaired structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adhesively-bonded composite patch repairs over cracked or corrosion-damaged metallic aircraft structures have shown great promise for extending life of ageing structures. This study presents the numerical investigation into the interface behaviour of adhesively-bonded cracked aluminum alloy substrate patched with fibre-reinforced composite material. The adhesive is modelled as an elasto-plastic bilinear material to characterise the debond behaviour, while the defective substrate is regarded as linear elastic continuum. Two typical patch shapes were selected based on information available in the literature. Geometric and material nonlinear analyses for square and octagonal patches were performed to capture peel and shear stresses developed between the substrate and the patch to examine the possibility of interface delamination/debonding. Parametric studies on adhesive thickness and patch thickness were carried out to predict their infuence on damage tolerance of repaired structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrity enhancement of damaged or design deficient structures through repairs is attracting considerable engineering attention. Bonded composite patch repairs to cracked metallic sheets offer various advantages over riveted doubler type, particularly for airframe applications. This paper first reviews the R&D activity in the area of structural repairs. It then approaches the problem of a composite patch repair to a cracked aluminium sheet with different finite element modelling strategies and compares their outcome. The efficient finite element modelling approach thus established is used to study the effect of patch material, patch size, patch symmetry and adhesive thickness on repair performance as the crack grows in the repair configuration. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue engineering deals with the regeneration of tissues for bone repair, wound healing, drug delivery, etc., and a highly porous 3D artificial scaffold is required to accommodate the cells and direct their growth. We prepared 3D porous calcium phosphate ((hydroxyapatite/beta-tricalcium phosphate)/agarose, (HAp/beta-TCP)/agarose) composite scaffolds by sol-gel technique with water (WBS) and ethanol (EBS) as solvents. The crystalline phases of HAp and beta-TCP in the scaffolds were confirmed by X-ray diffraction (XRD) analysis. The EBS had reduced crystallinity and crystallite size compared to WBS. WBS and EBS revealed interconnected pores of 1 mu m and 100 nm, respectively. The swelling ratio was higher for EBS in water and phosphate buffered saline (PBS). An in vitro drug loading/release experiment was carried out on the scaffolds using gentamicin sulphate (GS) and amoxicillin (AMX). We observed initial burst release followed by sustained release from WBS and EBS. In addition, GS showed more extended release than AMX from both the scaffolds. GS and AMX loaded scaffolds showed greater efficacy against Pseudomonas than Bacillus species. WBS exhibited enhanced mechanical properties, wettability, drug loading and haemocompatibility compared to EBS. In vitro cell studies showed that over the scaffolds, MC3T3 cells attached and proliferated and there was a significant increase in live MC3T3 cells. Both scaffolds supported MC3T3 proliferation and mineralization in the absence of osteogenic differentiation supplements in media which proves the scaffolds are osteoconducive. Microporous scaffolds (WBS) could assist the bone in-growth, whereas the presence of nanopores (EBS) could enhance the degradation process. Hence, WBS and EBS could be used as scaffolds for tissue engineering and drug delivery. This is a cost effective technique to produce scaffolds of degradable 3D ceramic-polymer composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanohydroxyapatite (op-HA) surface-modified with L-lactic acid oligomer (LAc oligomer) was prepared by LAc oligomer grafted onto the hydroxyapatite (HA) surface. The nanocomposite of op-HA/PLGA with different op-HA contents of 5, 10, 20 and 40 wt.% in the composite was fabricated into three-dimensional scaffolds by the melt-molding and particulate leaching methods. PLGA and the nanocomposite of HA/PLGA with 10 wt.% of ungrafted hydroxyapatite were used as the controls. The scaffolds were highly porous with evenly distributed and interconnected pore structures, and the porosity was around 90%. Besides the macropores of 100-300 mu m created by the leaching of NaCl particles, the micropores (1-50 mu m) in the pore walls increased with increasing content of op-HA in the composites of op-HA/PLGA. The op-HA particles could disperse more uniformly than those of pure HA in PLGA matrix. The 20 wt.% op-HA/PLGA sample exhibited the maximum mechanical strength, including bending strength (4.14 MPa) and compressive strength (2.31 MPa). The cell viability and the areas of the attached osteoblasts on the films of 10 wt.% op-HA/PLGA and 20 wt.% op-HA/PLGA were evidently higher than those on the other composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: This paper describes the chemistry and properties of polyacid-modified composite resins ("compomers") designed for use in clinical dentistry, and reviews the literature in this area. METHODS: Information has been obtained from over 50 published articles appearing in the dental and biomaterials literature, with studies being principally identified through MedLine. RESULTS: Published work shows that polyacid-modified composite resins constitute a discrete class of polymeric repair material for use in dentistry. Their distinction is that they contain hydrophilic components, and these cause water to be drawn into the material following cure. This triggers an acid-base reaction, and gives the materials certain clinically-desirable properties (fluoride release, buffering capability) that are also associated with glass-ionomer cements. The water uptake leads to a decline in certain, though not all, physical properties. However, clinical studies have shown these materials to perform acceptably in a variety of applications (Class I, Class II and Class V cavities, as fissure sealants and as orthodontic band cements), especially in children's teeth. CONCLUSIONS/SIGNIFICANCE: Polyacid-modified composite resins constitute a versatile class of dental repair material, whose bioactivity confers clinical advantages, and which are particularly useful in children's dentistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on a design study assessing the impact of laminate manufacturing constraints on the structural performance and weight of composite stiffened panels. The study demonstrates that maximizing ply continuity results in weight penalties, while various geometric constraints related to manufacture and repair can be accommodated without significant weight penalties, potentially generating robust flexible designs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preliminary evaluation is described of a new electro-thermal anti-icing/de-icing device for carbon fibre composite aerostructures. The heating element is an electro-conductive carbon-based textile (ECT) by Gorix. Electrical shorting between the structural carbon fibres and the ECT was mitigated by incorporating an insulating layer formed of glass fibre plies or a polymer film. A laboratory-based anti-icing and de-icing test program demonstrated that the film-insulated devices yielded better performance than the glssass fibre insulated ones. The heating capability after impact damage was maintained as long as the ECT fabric was not breached to the extent of causing electrical shorting. A modified structural scarf repair was shown to restore the heating capacity of a damaged specimen.