984 resultados para Reliability index (RI)
Resumo:
Fabrication and characterization of a UVinscribed fiber Bragg grating (FBG) with a micro-slot liquid core is presented. Femtosecond (fs) laser patterning/chemical etching technique was employed to engrave a micro-slot with dimensions of 5.74 μm(h) × 125 μm(w) × 1388.72 μm(l) across the whole grating. The device has been evaluated for refractive index (RI) and temperature sensitivities and exhibited distinctive thermal response and RI sensitivity beyond the detection limit of reported fiber gratings. This structure has not just been RI sensitive, but also maintained the robustness comparing with the bare core FBGs and long-period gratings with the partial cladding etched off. © 2012 Optical Society of America.
Resumo:
We report a linear response optical refractive index (RI) sensor, which is fabricated based on a micro-channel created within a Fabry Perot (F-P) cavity by chemical etching assisted by femtosecond laser inscription. The experimental results show the F-P resonance peak has a linear response with the RI of medium and the measuring sensitivity is proportion to the length of micro-channel. The sensor with 5 μm -long micro-channel exhibited an RI sensitivity of 1.15nm/RIU and this sensitivity increased to 9.08nm/RIU when widening the micro-channel to 35μm. Furthermore, such micro-channel FP sensors show a much broader RI sensing dynamic range (from 1.3 to 1.7) than other reported optical fiber sensors. © 2012 SPIE.
Resumo:
We report the fabrication of a refractive index (RI) sensor based on a liquid core fibre Bragg grating (FBG). A micro-slot FBG was created in standard telecom optical fibre employing the tightly focused femtosecond laser inscription aided chemical etching. A micro-slot with dimensions of 5.74(h) × 125(w) × 1388.72(l) μm was engraved across the whole fibre and along 1mm long FBG which gives advantage of a relatively robust liquid core waveguide. The device performed the refractive index sensitivity up to about 742.72 nm/RIU. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
We propose and experimentally demonstrate a refractive index (RI) sensor based on cascaded microfiber knot resonators (CMKRs) with Vernier effect. Deriving from high proportional evanescent field of microfiber and spectrum magnification function of Vernier effect, the RI sensor shows high sensitivity as well as high detection resolution. By using the method named "Drawing-Knotting-Assembling (DKA)", a compact CMKRs is fabricated for experimental demonstration. With the assistance of Lorentz fitting algorithm on the transmission spectrum, sensitivity of 6523nm/RIU and detection resolution up to 1.533 x 10-7 RIU are obtained in the experiment which show good agreement with the numerical simulation. The proposed all-fiber RI sensor with high sensitivity, compact size and low cost can be widely used for chemical and biological detection, as well as the electronic/magnetic field measurement
Resumo:
This paper presents a highly sensitive ambient refractive index (RI) sensor based on 81° tilted fiber grating (81°-TFG) structure UV-inscribed in standard telecom fiber (62.5μm cladding radius) with carbon nanotube (CNT) overlay deposition. The sensing mechanism is based on the ability of CNT to induce change in transmitted optical power and the high sensitivity of 81°-TFG to ambient refractive index. The thin CNT film with high refractive index enhances the cladding modes of the TFG, resulting in the significant interaction between the propagating light and the surrounding medium. Consequently, the surrounding RI change will induce not only the resonant wavelength shift but also the power intensity change of the attenuation band in the transmission spectrum. Result shows that the change in transmitted optical power produces a corresponding linear reduction in intensity with increment in RI values. The sample shows high sensitivities of ∼207.38nm/RIU, ∼241.79nm/RIU at RI range 1.344-1.374 and ∼113.09nm/RIU, ∼144.40nm/RIU at RI range 1.374-1.392 (for X-pol and Y-pol respectively). It also shows power intensity sensitivity of ∼ 65.728dBm/RIU and ∼ 45.898 (for X-pol and Y-pol respectively). The low thermal sensitivity property of the 81°-TFG offers reduction in thermal cross-sensitivity and enhances specificity of the sensor.
Resumo:
Background: Protein-protein interactions (PPIs) constitute one of the most crucial conditions to sustain life in living organisms. To study PPI in Arabidopsis thaliana we have developed AtPIN, a database and web interface for searching and building interaction networks based on publicly available protein-protein interaction datasets. Description: All interactions were divided into experimentally demonstrated or predicted. The PPIs in the AtPIN database present a cellular compartment classification (C(3)) which divides the PPI into 4 classes according to its interaction evidence and subcellular localization. It has been shown in the literature that a pair of genuine interacting proteins are generally expected to have a common cellular role and proteins that have common interaction partners have a high chance of sharing a common function. In AtPIN, due to its integrative profile, the reliability index for a reported PPI can be postulated in terms of the proportion of interaction partners that two proteins have in common. For this, we implement the Functional Similarity Weight (FSW) calculation for all first level interactions present in AtPIN database. In order to identify target proteins of cytosolic glutamyl-tRNA synthetase (Cyt-gluRS) (AT5G26710) we combined two approaches, AtPIN search and yeast two-hybrid screening. Interestingly, the proteins glutamine synthetase (AT5G35630), a disease resistance protein (AT3G50950) and a zinc finger protein (AT5G24930), which has been predicted as target proteins for Cyt-gluRS by AtPIN, were also detected in the experimental screening. Conclusions: AtPIN is a friendly and easy-to-use tool that aggregates information on Arabidopsis thaliana PPIs, ontology, and sub-cellular localization, and might be a useful and reliable strategy to map protein-protein interactions in Arabidopsis. AtPIN can be accessed at http://bioinfo.esalq.usp.br/atpin.
Resumo:
Renal diseases are common in older cats. Decreased renal blood flow may be the first sign of dysfunction and can be evaluated by Doppler ultrasound. But previous studies suggest that the resistive index (RI) has a low sensitivity for detecting renal disease. Doppler waveforms of renal and intrarenal arteries demonstrate decreased blood flow before there are any changes in the RI. The purpose of this study was to evaluate the normal Doppler flowmetrics parameters of renal arteries (RAs), interlobar arteries (IAs) and abdominal aorta (AO) in adult healthy, Persian cats. Twenty-five Persian cats (13 females and 12 males with mean age of 30 months and an age range 12-60 months) with normal clinical examinations and biochemical tests and normal systemic blood pressure were given B-mode ultrasonographies in order to exclude all nephropathies, including polycystic kidney disease. All measurements were performed on both kidneys. Both kidneys (n = 50) were examined by color mapping of the renal vasculature. Pulsed Doppler was used to examine both RAs, the IAs at cranial, middle and caudal sites, and the AO. The RI was calculated for all of the vessels. Early systolic acceleration (ESA) of RA and IA was obtained with Doppler spectral analysis. Furthermore, the ratio indices between RA/AO, and IA/RA velocities were calculated. The mean values of peak systolic velocity (PSV) and the diameter for AO were 53.17 +/- 13.46 cm/s and 0.38 +/- 0.08 cm, respectively. The mean RA diameter for all 50 kidneys was 0.15 +/- 0.02 cm. Considering the velocimetric values in both RAs, the mean PSV and RI that were obtained were 41.17 +/- 9.40 cm/s and 0.54 +/- 0.07. The RA had a mean ESA of 1.12 +/- 1.14 m/s(2) and the calculated upper limit of the reference value was 3.40 m/s(2). The mean renal-aortic ratio was 0.828 +/- 0.296. The IA showed PSV and RI values of 32.16 +/- 9.33 cm/s and 0.52 +/- 0.06, respectively. The mean ESA of all IAs was 0.73 +/- 0.61 m/s(2). The calculated upper limit of the reference value was 2.0 m/s(2). The mean renal-interlobar artery ratio was 1.45 +/- 0.57. The RI values obtained in this study were similar to values reported in the literature. Some conditions that lead to a decrease in compliance and to an increase in vascular resistance can affect the Doppler spectral waveforms without changes in RI. To our knowledge, there are no studies that were directed toward to the normal ESA values of the renal vasculature in Persian cats. This study introduced a new ratio between the PSV of the RA and the IA. This index was developed based on the well-known effects of Doppler on the detection of stenosis, regardless of the cause. Further studies are necessary to verify the hemodynamic behavior of this index under pathological conditions in cats as well as the effect of aging, nephropathies and systemic pressure on Doppler velocimetric parameters. (C) 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives To evaluate the presence of false flow three-dimensional (3D) power Doppler signals in `flow-free` models. Methods 3D power Doppler datasets were acquired from three different flow-free phantoms (muscle, air and water) with two different transducers and Virtual Organ Computer-aided AnaLysis was used to generate a sphere that was serially applied through the 3D dataset. The vascularization flow index was used to compare artifactual signals at different depths (from 0 to 6 cm) within the different phantoms and at different gain and pulse repetition frequency (PR F) settings. Results Artifactual Doppler signals were seen in all phantoms despite these being flow-free. The pattern was very similar and the degree of artifact appeared to be dependent on the gain and distance from the transducer. False signals were more evident in the far field and increased as the gain was increased, with false signals first appearing with a gain of 1 dB in the air and muscle phantoms. False signals were seen at a lower gain with the water phantom (-15 dB) and these were associated with vertical lines of Doppler artifact that were related to PRF, and disappeared when reflections were attenuated. Conclusions Artifactual Doppler signals are seen in flow-free phantoms and are related to the gain settings and the distance from the transducer. In the in-vivo situation, the lowest gain settings that allow the detection of blood flow and adequate definition of vessel architecture should be used, which invariably means using a setting near or below the middle of the range available. Additionally, observers should be aware of vertical lines when evaluating cystic or liquid-containing structures. Copyright (C) 2010 ISUOC. Published by John Wiley & Sons, Ltd.
Resumo:
Introduction: Mini-implants are placed in restricted sites, requiring an accurate surgical technique. However, no systematic study has quantified technique accuracy to reliably predict the surgical risks. Therefore, a graduated 3-dimensional radiographic-surgical guide (G-RSG) was proposed, and its inaccuracy and risk index (RI) were estimated. Methods: The sample consisted of 6 subjects (4 male, 2 female), who used mini-implant anchorage. Ten drill-free screws (DFS) were placed by using the G-RSG. The central point of the mesiodistal septum width (SW) was the selected implant site on the presurgical radiograph. The distances between DFS and the adjacent teeth (5-DFS and 6-DFS) were measured to evaluate screw centralization and inaccuracy degree (ID). These distances were statistically compared by independent t tests, and inaccuracy was determined by the expression ID = (5-DFS-6-DFS)/2, which represents deviation of the mini-implant`s final position regarding the central point initially selected. Then SW, ID, and screw diameter (SO) were combined to estimate the surgical risk with RI expressed by RI = SO/SW-ID. Results: The 5-DFS and 6-DFS distances were not significantly different. The ID of the G-RSG was 0.17 mm. The low ID ensured a safe RI (<1) in spite of the restricted SW. Conclusions: The G-RSG accuracy allowed fine prediction of the final DFS position in the inter-radicular septum, with a low RI, which is a helpful tool to estimate surgical risks. (Am J Orthod Dentofacial Orthop 2009; 136: 722-35)
Resumo:
A partir da segunda metade do século XX, mudanças no modo de produção capitalista começaram a afetar a relação que as empresas estabeleciam com o trabalhador. Diante de um mercado imprevisível, a carreira tradicional, marcada, entre outros aspectos, por empregos duradouros e com possibilidade de ascensão na hierarquia da organização, tornou-se menos recorrente. Paralelamente, começaram a despontar novas concepções sobre carreira, tendo a maioria um enfoque individualista. Dentre as novas proposições, o presente estudo tomou como referência a concepção de carreira proteana. Esse modelo, de origem norte-americana, tem como ideia central a noção de uma carreira que é gerida pelo indivíduo, e tem como meta o alcance do sucesso psicológico. Desta forma, ancora-se em duas principais dimensões: autogerenciamento e direcionamento para valores. Considerando os diversos estudos que descrevem as dificuldades enfrentadas por estudantes na transição da universidade para o mercado de trabalho, esta pesquisa objetivou compreender aspectos do gerenciamento proteano de carreira entre universitários brasileiros que já tinham concluído, pelo menos, a primeira metade do curso de graduação. Para tanto, o estudo foi dividido em dois artigos. O primeiro foi destinado ao desenvolvimento e validação da Escala de Atitudes de Carreira Proteana para universitários, tendo sido realizado com uma amostra de 1016 estudantes de 37 cursos diferentes, com idade variando entre 18 e 65 anos, e média de 24,52 (DP = 6,69 anos). O instrumento, denominado neste estudo de Escala de Gerenciamento Proteano de Carreira para Universitários (EGPC-U) atestou a estrutura de duas dimensões, evidenciada também na versão original da medida. Os índices de confiabilidade foram satisfatórios e superiores a 12 0,61, tendo o instrumento a possibilidade de ser utilizado em serviços de orientação profissional ou de carreira. O segundo artigo objetivou compreender como as dimensões do modelo proteano se relacionam com variáveis sóciodemográficas e com construtos psicossociais: personalidade, lócus de controle, saúde e satisfação com a vida, e envolveu alunos de duas áreas de conhecimento: humanas e exatas. A amostra foi composta por 525 alunos, sendo 245 da área de humanas e 280 de exatas, sendo 52% do sexo masculino. A idade dos participantes variou entre 18 e 30 anos e média de 22,59 anos (DP = 2,66 anos). A partir dos resultados do estudo 2, constatou-se que alunos da área de humanas, quando comparados a estudantes de exatas, tendem a apresentar média superior na dimensão de direcionamento para valores. Verificou-se ainda que os aspectos de conscienciosidade e lócus de controle interno são preditores significativos do autogerenciamento tanto entre alunos de humanas como de exatas e que a adoção de atitudes proteanas tende a impactar positivamente aspectos da saúde e da satisfação com a vida do indivíduo. O estudo, de um modo geral, permitiu verificar a existência de características proteanas entre universitários, como também possibilitou conhecer variáveis relacionadas às atitudes de autogerenciamento e direcionamento para valores. Destaca-se, porém, a necessidade de pesquisas complementares com a exploração de outras variáveis psicossociais que possam estar relacionadas ao gerenciamento proteano entre graduandos.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas
Resumo:
The problem of uncertainty propagation in composite laminate structures is studied. An approach based on the optimal design of composite structures to achieve a target reliability level is proposed. Using the Uniform Design Method (UDM), a set of design points is generated over a design domain centred at mean values of random variables, aimed at studying the space variability. The most critical Tsai number, the structural reliability index and the sensitivities are obtained for each UDM design point, using the maximum load obtained from optimal design search. Using the UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on supervised evolutionary learning. Finally, using the developed ANN a Monte Carlo simulation procedure is implemented and the variability of the structural response based on global sensitivity analysis (GSA) is studied. The GSA is based on the first order Sobol indices and relative sensitivities. An appropriate GSA algorithm aiming to obtain Sobol indices is proposed. The most important sources of uncertainty are identified.
Resumo:
Corrosion of reinforcement bars in concrete structures is the most significant deterioration mechanism in these structures. Corrosion is extremely difficult to predict and, consequently, can be regarded as an unpredictable event. Following this, robustness assessment methods can be employed to define the susceptibility of a structure to corrosion. In this work, robustness is measured in terms of the remaining safety of a deteriorated structure. The proposed methodology is illustrated by means of a reinforced concrete (RC) slab subjected to dead and live loads. The performance of the corroded slab is evaluated using non-linear analysis. The reliability index is adopted to assess the safety of the deteriorated structure. To compute the reliability index a strategy combining the First Order Reliability Method (FORM) and the Response Surface Method (RSM) is used.
Resumo:
Part of the optical clearing study in biological tissues concerns the determination of the diffusion characteristics of water and optical clearing agents in the subject tissue. Such information is sufficient to characterize the time dependence of the optical clearing mechanisms—tissue dehydration and refractive index (RI) matching. We have used a simple method based on collimated optical transmittance measurements made from muscle samples under treatment with aqueous solutions containing different concentrations of ethylene glycol (EG), to determine the diffusion time values of water and EG in skeletal muscle. By representing the estimated mean diffusion time values from each treatment as a function of agent concentration in solution, we could identify the real diffusion times for water and agent. These values allowed for the calculation of the correspondent diffusion coefficients for those fluids. With these results, we have demonstrated that the dehydration mechanism is the one that dominates optical clearing in the first minute of treatment, while the RI matching takes over the optical clearing operations after that and remains for a longer time of treatment up to about 10 min, as we could see for EG and thin tissue samples of 0.5 mm.
Resumo:
Old timber structures may show significant variation in the cross section geometry along the same element, as a result of both construction methods and deterioration. As consequence, the definition of the geometric parameters in situ may be both time consuming and costly. This work presents the results of inspections carried out in different timber structures. Based on the obtained results, different simplified geometric models are proposed in order to efficiently model the geometry variations found. Probabilistic modelling techniques are also used to define safety parameters of existing timber structures, when subjected to dead and live loads, namely self-weight and wind actions. The parameters of the models have been defined as probabilistic variables, and safety of a selected case study was assessed using the Monte Carlo simulation technique. Assuming a target reliability index, a model was defined for both the residual cross section and the time dependent deterioration evolution. As a consequence, it was possible to compute probabilities of failure and reliability indices, as well as, time evolution deterioration curves for this structure. The results obtained provide a proposal for definition of the cross section geometric parameters of existing timber structures with different levels of decay, using a simplified probabilistic geometry model and considering a remaining capacity factor for the decayed areas. This model can be used for assessing the safety of the structure at present and for predicting future performance.