393 resultados para Relativity
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Poincar, group generalizes the Galilei group for high-velocity kinematics. The de Sitter group is assumed to go one step further, generalizing Poincar, as the group governing high-energy kinematics. In other words, ordinary special relativity is here replaced by de Sitter relativity. In this theory, the cosmological constant I > is no longer a free parameter, and can be determined in terms of other quantities. When applied to the whole universe, it is able to predict the value of I > and to explain the cosmic coincidence. When applied to the propagation of ultra-high energy photons, it gives a good estimate of the time delay observed in extragalactic gamma-ray flares. It can, for this reason, be considered a new paradigm to approach the quantum gravity problem.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The recipe used to compute the symmetric energy-momentum tensor in the framework of ordinary field theory bears little resemblance to that used in the context of general relativity, if any. We show that if one stal ts fi om the field equations instead of the Lagrangian density, one obtains a unified algorithm for computing the symmetric energy-momentum tensor in the sense that it can be used for both usual field theory and general relativity.
Resumo:
We describe the ideas behind the package 'isometry', implemented in Maple to calculate isometry groups of dimensions 2, 3 and 4 in General Relativity. The package extends the functionality of previous programs written to perform invariant classification of space-times in General Relativity. Programming solutions used to surmount problems encountered with the calculation of eigenvectors and the determination of the signs of expressions are described. We also show how the package can be used to find the Killing vectors of a space-time.
Resumo:
We investigate whether inertial thermometers moving in a thermal bath behave as being hotter or colder. This question is directly related with the classical controversy concerning how temperature transforms under Lorentz transformations. Rather than basing our arguments on thermodynamical hypotheses, we use plain relativistic quantum field theoretical methods. © 1995.
Resumo:
We analyze the presence of a scalar field around a spherically symmetric distribution of an ordinary matter, obtaining an exact solution for a given scalar field distribution.
Resumo:
In the presence of a cosmological constant, interpreted as a purely geometric entity, absence of matter is represented by a de Sitter spacetime. As a consequence, ordinary Poincaré special relativity is no longer valid and must be replaced by a de Sitter special relativity. By considering the kinematics of a spinless particle in a de Sitter spacetime, we study the geodesics of this spacetime, the ensuing definitions of canonical momenta, and explore possible implications for quantum mechanics. © 2007 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Na literatura da área de Ensino de Física encontramos diversos argumentos em defesa da inclusão, nos currículos escolares do Ensino Médio, de conteúdos de Física Moderna e Contemporânea. A Teoria da Relatividade Especial e Geral (ao lado da Mecânica Quântica) é um dos pilares da Física Moderna. Consideramos significativo e oportuno obter um panorama da produção acadêmica sobre o ensino e aprendizagem deste tópico. Nosso objetivo é sintetizar os avanços, as convergências e sinalizar perspectivas, com o intuito de contribuir para um avanço e defesa dos trabalhos futuros. Assim, procuramos resposta para a questão: Quais as contribuições da pesquisa em Ensino de Física para que a Teoria da Relatividade Especial e Geral (TREG) possa ser abordada no Ensino Médio?
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neutron stars are some of the most fascinating objects in Nature. Essentially all aspects of physics seems to be represented inside them. Their cores are likely to contain deconfined quarks, hyperons and other exotic phases of matter in which the strong interaction is the dominant force. The inner region of their solid crust is penetrated by superfluid neutrons and their magnetic fields may reach well over 1012 Gauss. Moreover, their extreme mean densities, well above the densities of nuclei, and their rapid rotation rates makes them truly relativistic both in the special as well as in the general sense. This thesis deals with a small subset of these phenomena. In particular the exciting possibility of trapping of gravita-tional waves is examined from a theoretical point of view. It is shown that the standard condition R < 3M is not essential to the trapping mechanism. This point is illustrated using the elegant tool provided by the optical geometry. It is also shown that a realistic equation of state proposed in the literature allows stable neutron star models with closed circular null orbits, something which is closely related to trapped gravitational waves. Furthermore, the general relativistic theory of elasticity is reviewed and applied to stellar models. Both static equilibrium as well as radially oscillating configurations with elasticsources are examined. Finally, Killing tensors are considered and their applicability to modeling of stars is discussed