306 resultados para Reforestation.
Resumo:
A mixed species reforestation program known as the Rainforestation Farming system was undertaken in the Philippines to develop forms of farm forestry more suitable for smallholders than the simple monocultural plantations commonly used then. In this study, we describe the subsequent changes in stand structure and floristic composition of these plantations in order to learn from the experience and develop improved prescriptions for reforestation systems likely to be attractive to smallholders. We investigated stands aged from 6 to 11 years old on three successive occasions over a 6 year period. We found the number of species originally present in the plots as trees >5 cm dbh decreased from an initial total of 76 species to 65 species at the end of study period. But, at the same time, some new species reached the size class threshold and were recruited into the canopy layer. There was a substantial decline in tree density from an estimated stocking of about 5000 trees per ha at the time of planting to 1380 trees per ha at the time of the first measurement; the density declined by a further 4.9% per year. Changes in composition and stand structure were indicated by a marked shift in the Importance Value Index of species. Over six years, shade-intolerant species became less important and the native shade-tolerant species (often Dipterocarps) increased in importance. Based on how the Rainforestation Farming plantations developed in these early years, we suggest that mixed-species plantations elsewhere in the humid tropics should be around 1000 trees per ha or less, that the proportion of fast growing (and hence early maturing) trees should be about 30–40% of this initial density and that any fruit tree component should only be planted on the plantation margin where more light and space are available for crowns to develop.
Resumo:
Background There has been growing interest in mixed species plantation systems because of their potential to provide a range of socio-economic and bio-physical benefits which can be matched to the diverse needs of smallholders and communities. Potential benefits include the production of a range of forest products for home and commercial use; improved soil fertility especially when nitrogen fixing species are included; improved survival rates and greater productivity of species; a reduction in the amount of damage from pests or disease; and improved biodiversity and wildlife habitats. Despite these documented services and growing interest in mixed species plantation systems, the actual planting areas in the tropics are low, and monocultures are still preferred for industrial plantings and many reforestation programs because of perceived higher economic returns and readily available information about the species and their silviculture. In contrast, there are few guidelines for the design and management of mixed-species systems, including the social and ecological factors of successful mixed species plantings. Methods This protocol explains the methodology used to investigate the following question: What is the available evidence for the relative performance of different designs of mixed-species plantings for smallholder and community forestry in the tropics? This study will systematically search, identify and describe studies related to mixed species plantings across tropical and temperate zones to identify the social and ecological factors that affect polyculture systems. The objectives of this study are first to identify the evidence of biophysical or socio-economic factors that have been considered when designing mixed species systems for community and smallholder forestry in the tropics; and second, to identify gaps in research of mixed species plantations. Results of the study will help create guidelines that can assist practitioners, scientists and farmers to better design mixed species plantation systems for smallholders in the tropics.
Resumo:
Results from the humid tropics of Australia demonstrate that diverse plantations can achieve greater productivity than monocultures. We found that increases in both the observed species number and the effective species richness were significantly related to increased levels of productivity as measured by stand basal area or mean individual tree basal area. Four of five plantation species were more productive in mixtures with other species than in monocultures, offering on average, a 55% increase in mean tree basal area. A general linear model suggests that species richness had a significant effect on mean individual tree basal area when environmental variables were included in the model. As monoculture plantations are currently the preferred reforestation method throughout the tropics these results suggest that significant productivity and ecological gains could be made if multi-species plantations are more broadly pursued.
Resumo:
Conservation and sustainable management of tropical forests needs a holistic approach: in addition to ecological concerns, socio-economic issues including cultural aspects must be taken into consideration. An ability to adapt practices is a key to successful collaborative natural resource management. Achieving this requires local participation and understanding of local conceptions of the environment. This study examined these issues in the context of northern Thailand. Northern uplands are the home of much of the remaining natural forest in Thailand and several ethnic minority groups commonly referred to as hill tribes. The overall purpose of this study was to grasp a regional view of an ethnically diverse forested area and to elicit prospects to develop community forestry for conservation purposes and for securing people s livelihood. Conservation was a central goal of management as the forests in the area were largely designated as protected. The aim was to study local perceptions, objectives, values and practices of forest management, under the umbrella of the concept environmental literacy, as well as the effects of forest policy on community management goals and activities. Environmental literacy refers to holistic understanding of the environment. It was used as a tool to examine people s views, interests, knowledge and motivation associated to forests. The material for this study was gathered in six villages in Chiang Mai Province. Three minority groups were included in the study, the Karen, Hmong and Lawa, and also the Thai. Household and focus group interviews were conducted in the villages. In addition, officials at district, regional and national levels, workers of non-governmental organisations, and academics were interviewed, and some data were gathered from the students of a local school. The results showed that motivation for protecting the forests existed among each ethnic group studied. This was a result of culture and traditions evolved in the forest environment but also of a need to adapt to a changed situation and environment and to outside pressures. The consequences of deforestation were widely agreed on in the villages, and the impact of socio-economic changes on the forests and livelihood was also recognised. The forest was regarded as a source of livelihood providing land, products and services essential to the people inhabiting rural uplands. Traditions, fire control, cooperation, reforestation, separation of protected and utilisable areas, and rules were viewed as central for conservation. For the villagers, however, conservation meant sustainable use, whereas the government has tended to prefer strict restrictions on forest resource use. Thus, conflicts had arisen. Between communities, cooperation was more dominant than conflict. The results indicated that the heterogeneity of forest dwellers, although it has to be recognised, should not be overemphasised: ethnic diversity can be considered as no major obstacle for successful community forestry. Collaborative management is particularly important in protected areas in order to meet the conservation goals while providing opportunities for livelihood. Forest management needs more positive incentives and increased dialogue.
Resumo:
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) forests dominate in Finnish Lapland. The need to study the effect of both soil factors and site preparation on the performance of planted Scots pine has increased due to the problems encountered in reforestation, especially on mesic and moist, formerly spruce-dominated sites. The present thesis examines soil hydrological properties and conditions, and effect of site preparation on them on 10 pine- and 10 spruce-dominated upland forest sites. Finally, the effects of both the site preparation and reforestation methods, and soil hydrology on the long-term performance of planted Scots pine are summarized. The results showed that pine and spruce sites differ significantly in their soil physical properties. Under field capacity or wetter soil moisture conditions, planted pines presumably suffer from excessive soil water and poor soil aeration on most of the originally spruce sites, but not on the pine sites. The results also suggested that site preparation affects the soil-water regime and thus prerequisites for forest growth over two decades after site preparation. High variation in the survival and mean height of planted pine was found. The study suggested that on spruce sites, pine survival is the lowest on sites that dry out slowly after rainfall events, and that height growth is the fastest on soils that reach favourable aeration conditions for root growth soon after saturation, and/or where the average air-filled porosity near field capacity is large enough for good root growth. Survival, but not mean height can be enhanced by employing intensive site preparation methods on spruce sites. On coarser-textured pine sites, site preparation methods don t affect survival, but methods affecting soil fertility, such as prescribed burning and ploughing, seem to enhance the height growth of planted Scots pines over several decades. The use of soil water content in situ as the sole criterion for sites suitable for pine reforestation was tested and found to be a relatively uncertain parameter. The thesis identified new potential soil variables, which should be tested using other data in the future.
Resumo:
Mixed species plantations using native trees are increasingly being considered for sustainable timber production. Successful application of mixed species forestry systems requires knowledge of the potential spatial interaction between species in order to minimise the chance of dominance and suppression and to maximise wood production. Here, we examined species performances across 52 experimental plots of tree mixtures established on cleared rainforest land to analyse relationships between the growth of component species and climate and soil conditions. We derived site index (SI) equations for ten priority species to evaluate performance and site preferences. Variation in SI of focus species demonstrated that there are strong species-specific responses to climate and soil variables. The best predictor of tree growth for rainforest species Elaeocarpus grandis and Flindersia brayleyana was soil type, as trees grew significantly better on well-draining than on poorly drained soil profiles. Both E. grandis and Eucalyptus pellita showed strong growth response to variation in mean rain days per month. Our study generates understanding of the relative performance of species in mixed species plantations in the Wet Tropics of Australia and improves our ability to predict species growth compatibilities at potential planting sites within the region. Given appropriate species selections and plantation design, mixed plantations of high-value native timber species are capable of sustaining relatively high productivity at a range of sites up to age 10 years, and may offer a feasible approach for large-scale reforestation.
Resumo:
Key message Eucalyptus pellita demonstrated good growth and wood quality traits in this study, with young plantation grown timber being suitable for both solid and pulp wood products. All traits examined were under moderate levels of genetic control with little genotype by environment interaction when grown on two contrasting sites in Vietnam. Context Eucalyptus pellita currently has a significant role in reforestation in the tropics. Research to support expanded of use of this species is needed: particularly, research to better understand the genetic control of key traits will facilitate the development of genetically improved planting stock. Aims This study aimed to provide estimates of the heritability of diameter at breast height over bark, wood basic density, Kraft pulp yield, modulus of elasticity and microfibril angle, and the genetic correlations among these traits, and understand the importance of genotype by environment interactions in Vietnam. Methods Data for diameter and wood properties were collected from two 10-year-old, open-pollinated progeny trials of E. pellita in Vietnam that evaluated 104 families from six native range and three orchard sources. Wood properties were estimated from wood samples using near-infrared (NIR) spectroscopy. Data were analysed using mixed linear models to estimate genetic parameters (heritability, proportion of variance between seed sources and genetic correlations). Results Variation among the nine sources was small compared to additive variance. Narrow-sense heritability and genetic correlation estimates indicated that simultaneous improvements in most traits could be achieved from selection among and within families as the genetic correlations among traits were either favourable or close to zero. Type B genetic correlations approached one for all traits suggesting that genotype by environment interactions were of little importance. These results support a breeding strategy utilizing a single breeding population advanced by selecting the best individuals across all seed sources. Conclusion Both growth and wood properties have been evaluated. Multi-trait selection for growth and wood property traits will lead to more productive populations of E. pellita both with improved productivity and improved timber and pulp properties.
Resumo:
The Clean Development Mechanism (CDM), Article 12 of the Kyoto Protocol allows Afforestation and Reforestation (A/R) projects as mitigation activities to offset the CO2 in the atmosphere whilst simultaneously seeking to ensure sustainable development for the host country. The Kyoto Protocol was ratified by the Government of India in August 2002 and one of India's objectives in acceding to the Protocol was to fulfil the prerequisites for implementation of projects under the CDM in accordance with national sustainable priorities. The objective of this paper is to assess the effectiveness of using large-scale forestry projects under the CDM in achieving its twin goals using Karnataka State as a case study. The Generalized Comprehensive Mitigation Assessment Process (GCOMAP) Model is used to observe the effect of varying carbon prices on the land available for A/R projects. The model is coupled with outputs from the Lund-Potsdam-Jena (LPJ) Dynamic Global Vegetation Model to incorporate the impacts of temperature rise due to climate change under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2, A1B and B1. With rising temperatures and CO2, vegetation productivity is increased under A2 and A1B scenarios and reduced under B1. Results indicate that higher carbon price paths produce higher gains in carbon credits and accelerate the rate at which available land hits maximum capacity thus acting as either an incentive or disincentive for landowners to commit their lands to forestry mitigation projects. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Climate change is one of the most important global environmental challenges, with implications for food production, water supply, health, energy, etc. Addressing climate change requires a good scientific understanding as well as coordinated action at national and global level. This paper addresses these challenges. Historically, the responsibility for greenhouse gas emissions' increase lies largely with the industrialized world, though the developing countries are likely to be the source of an increasing proportion of future emissions. The projected climate change under various scenarios is likely to have implications on food production, water supply, coastal settlements, forest ecosystems, health, energy security, etc. The adaptive capacity of communities likely to be impacted by climate change is low in developing countries. The efforts made by the UNFCCC and the Kyoto Protocol provisions are clearly inadequate to address the climate change challenge. The most effective way to address climate change is to adopt a sustainable development pathway by shifting to environmentally sustainable technologies and promotion of energy efficiency, renewable energy, forest conservation, reforestation, water conservation, etc. The issue of highest importance to developing countries is reducing the vulnerability of their natural and socio-economic systems to the projected climate change. India and other developing countries will face the challenge of promoting mitigation and adaptation strategies, bearing the cost of such an effort, and its implications for economic development.
Resumo:
In this study, the potential for increasing the tree cover and thereby the biomass and carbon as a mitigation option of three categories of wastelands, irrespective of their tenure, are considered. The area under wastelands in Himachal Pradesh, according to NRSA (2005), is estimated to be 2.83 Mha. Among the 28 categories of wastelands reported by NRSA, only 15 categories exist in Himachal Pradesh. In the present study, three land categories are considered for estimating the mitigation potential. They include: (i) Degraded forestland, (ii) Degraded community land and (iii) Degraded and abandoned private land. Choice of species or the mix of species to be planted on the three land categories considered for reforestation is discussed. Carbon pools considered in the present study are those, which account only for aboveground biomass, belowground biomass and soil organic carbon. This study estimates the mitigation potential at the state level considering land available under more than one category. It also provides a roadmap for future work in support of mitigation analysis and implementation.
Resumo:
A recent modelling study has shown that precipitation and runoff over land would increase when the reflectivity of marine clouds is increased to counter global warming. This implies that large scale albedo enhancement over land could lead to a decrease in runoff over land. In this study, we perform simulations using NCAR CAM3.1 that have implications for Solar Radiation Management geoengineering schemes that increase the albedo over land. We find that an increase in reflectivity over land that mitigates the global mean warming from a doubling of CO2 leads to a large residual warming in the southern hemisphere and cooling in the northern hemisphere since most of the land is located in northern hemisphere. Precipitation and runoff over land decrease by 13.4 and 22.3%, respectively, because of a large residual sinking motion over land triggered by albedo enhancement over land. Soil water content also declines when albedo over land is enhanced. The simulated magnitude of hydrological changes over land are much larger when compared to changes over oceans in the recent marine cloud albedo enhancement study since the radiative forcing over land needed (-8.2 W m(-2)) to counter global mean radiative forcing from a doubling of CO2 (3.3 W m(-2)) is approximately twice the forcing needed over the oceans (-4.2 W m(-2)). Our results imply that albedo enhancement over oceans produce climates closer to the unperturbed climate state than do albedo changes on land when the consequences on land hydrology are considered. Our study also has important implications for any intentional or unintentional large scale changes in land surface albedo such as deforestation/afforestation/reforestation, air pollution, and desert and urban albedo modification.
Resumo:
In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures.
Resumo:
Land-use changes since the start of the industrial era account for nearly one-third of the cumulative anthropogenic CO2 emissions. In addition to the greenhouse effect of CO2 emissions, changes in land use also affect climate via changes in surface physical properties such as albedo, evapotranspiration and roughness length. Recent modelling studies suggest that these biophysical components may be comparable with biochemical effects. In regard to climate change, the effects of these two distinct processes may counterbalance one another both regionally and, possibly, globally. In this article, through hypothetical large-scale deforestation simulations using a global climate model, we contrast the implications of afforestation on ameliorating or enhancing anthropogenic contributions from previously converted (agricultural) land surfaces. Based on our review of past studies on this subject, we conclude that the sum of both biophysical and biochemical effects should be assessed when large-scale afforestation is used for countering global warming, and the net effect on global mean temperature change depends on the location of deforestation/afforestation. Further, although biochemical effects trigger global climate change, biophysical effects often cause strong local and regional climate change. The implication of the biophysical effects for adaptation and mitigation of climate change in agriculture and agroforestry sectors is discussed. center dot Land-use changes affect global and regional climates through both biochemical and biophysical process. center dot Climate effect from biophysical process depends on the location of land-use change. center dot Climate mitigation strategies such as afforestation/reforestation should consider the net effect of biochemical and biophysical processes for effective mitigation. center dot Climate-smart agriculture could use bio-geoengineering techniques that consider plant biophysical characteristics such as reflectivity and water use efficiency.
Resumo:
Este estudo teve como finalidade levantar dados para uma avaliação das alternativas tecnológicas (cultivos de microalgas e reflorestamento) para a biofixação de CO2 da atmosfera próxima à usina termelétrica; tendo sido utilizada como referência a Usina Barbosa Lima Sobrinho. Já existe um projeto de avaliação do efeito do reflorestamento na fixação do CO2 nesta usina e, neste trabalho, foi avaliada a alternativa do cultivo de microalgas. Uma pesquisa inicial foi feita na literatura para verificar qual a espécie de microalga seria a mais adequada para ser utilizada no estudo, tendo sido a espécie Chlorella sp. a selecionada. Posteriormente os sistemas de cultivo de microalgas mais comumente empregados no mercado foram levantados e foi selecionado o cultivo em tanques abertos como referência para a modelagem do processo. Utilizando os dados da termelétrica e da literatura foi possível estimar a quantidade de CO2 que será retirada da atmosfera caso um sistema de cultivo seja efetivamente instalado na usina termelétrica. Uma análise econômica foi realizada para determinar a viabilidade do projeto. Os resultados indicam que a utilização deste tipo de tecnologia é promissora
Resumo:
A conservação dos ecossistemas e dos recursos ambientais neles inclusos é uma condição básica e essencial para o desenvolvimento sustentado de uma dada região. A degradação faz com que a possibilidade dele retornar ao seu estado original seja ínfima pois, sua dinâmica de restauração não seria a mesma do que antes foi sua colonização. A recuperação de áreas degradadas é dificultada devido à complexidade estrutural dos ecossistemas, exemplo das restingas ambientes sujeitos as condições bastante adversas (altas temperaturas, períodos de seca, vento constante, alta salinidade e escassez de nutrientes), por isso demandam de alta tecnologia para o desenvolvimento e produção de mudas, além de alto custo associado. O objetivo deste estudo é a criação de uma proposta para uso socioeconômico das áreas degradadas por plantios de cocos, em formações vegetais de restinga, município de Caravelas, e criar um modelo para que essas áreas sejam mais produtivas economicamente, a médio e longo prazo, a partir da geração de trabalho e renda e, conseqüentemente, inclusão social voltada para o uso sustentável de espécies nativas de restinga, através do extrativismo, considerando-se o potencial e a vocação natural do ecossistema de restinga. Nesse contexto, as categorias de análise desta tese basearam-se nos conflitos e vulnerabilidade socioambiental, etnobotânica, fitofisionomias, bens e serviços associados, tecnologia social, desenvolvimento local, gestão costeira, sustentabilidade ambiental e democrática, produtos florestais não madeiráveis e inclusão social. Os procedimentos metodológicos utilizados neste estudo foram apresentados em cada capítulo desta tese, estando inserido em pesquisas qualitativas (técnicas de observação participante e análise do discurso coletivo) associada aos levantamentos bibliográficos (dados secundários) e as pesquisas quantitativas, por entrevistas semiestruturadas. Os resultados deste estudo subsidiaram a formação de uma rede interativa para implantação de empreendimentos sustentáveis no processo produtivo local, no que se refere à utilização de espécies nativas de restingas com reflorestamento de áreas degradadas por plantios de coco, para fins de geração de trabalho e renda com base no movimento de tecnologia social.