998 resultados para Receptor GABA
Resumo:
GABAergic alterations in hypothalamus during compensatory hyperplasia after partial hepatectomy (PH), lead nitrate (LN) induced direct hyperplasia and N-nitrosodiethylamine (NDEA) induced neoplasia in liver were investigated. Serum GABA levels were increased in all 3 experimental groups compared with the control. GABA content decreased in hypothalamus of PH and NDEA treated rats, while it increased in LN treated rats. GABAA receptor number and affinity in hypothalamic membrane preparations of rats showed a significant decrease in PH and NDEA treated rats, while in LN treated rats the affinity increased without any change in the receptor number. The GABAB receptor number increased in PH and NDEA treated rats, while it decreased in LN treated rats. The affinity of the receptor also increased in NDEA treated rats. Plasma NE levels showed significant increase in PH and NDEA rats compared with the control while it decreased in LN treated rats. The results of the present study suggests that liver cell proliferation is influencing the hypothalamic GABAergic neurotransmission and these changes regulate the hepatic proliferation through the sympathetic stimulation.
Resumo:
In the present study, the effects of 5-HT, GABA and Bone Marrow Cells infused intranigrally to substantia nigra individually and in combinations on unilateral rotenone infused Parkinsonism induced rats. Scatchard analysis of DA, DA D1 and D2 receptors in the corpus striatum, cerebral cortex, cerebellum, brain stem and hippocampus showed a significant increase in the Brain regions of rotenone infused rat compared to control. Real Time PCR amplification of DA D1, D2, Bax and ubiquitin carboxy-terminal hydrolase were up regulated in the brain regions of rotenone infused rats compared to control. Gene expression studies of -Synuclien, cGMP and Cyclic AMP response element-binding protein showed a significant down regulation in Rotenone infused rats compared to control. Behavioural studies were carried out to confirm the biochemical and molecular studies.Our study demonstrated that BMC administration alone cannot reverse the above said molecular changes occurring in PD rat. 5-HT and GABA acting through their specific receptors in combination with bone marrow cells play a crucial role in the functional recovery of PD rats. 5-HT, GABA and Bone marrow cells treated PD rats showed significant reversal to control in DA receptor binding and gene expression. 5-HT and GABA have co-mitogenic property. Proliferation and differentiation of cells re-establishing the connections in Parkinson's disease facilitates the functional recovery. Thus, it is evident that 5-HT and GABA along with BMC to rotenone infused rats renders protection against oxidative, related motor and cognitive deficits which makes them clinically significant for cellbased therapy. The BMC transformed to neurons when co-transplanted with 5-HT and GABA which was confirmed with PKH2GL and nestin. These newly formed neurons have functional significance in the therapeutic recovery of Parkinson’s disease.
Resumo:
Background: Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrP(sc)) of the natural cellular prion protein (PrP(c)) encoded by the Prnp gene. Although several roles have been attributed to PrP(c), its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrP(c) studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation. Principal Findings: Here we explore the role of PrP(c) expression in neurotransmission and neural excitability using wild-type, Prnp -/- and PrP(c)-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp -/- mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using Illumina microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp -/- and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABA(A) and AMPA-kainate receptors are co-regulated in both Prnp -/- and Tg20 mice. Conclusions/Significance: Present results demonstrate that PrP(c) is necessary for the proper homeostatic functioning of hippocampal circuits, because of its relationships with GABA(A) and AMPA-Kainate neurotransmission. New PrP(c) functions have recently been described, which point to PrP(c) as a target for putative therapies in Alzheimer's disease. However, our results indicate that a "gain of function" strategy in Alzheimer's disease, or a "loss of function" in prionopathies, may impair PrP(c) function, with devastating effects. In conclusion, we believe that present data should be taken into account in the development of future therapies.
Resumo:
To investigate the ability of hexanic ethanolic fraction of Rubus brasiliensis Martius (Roseceae), to induce anxiolytic effect and also the possible involvement of the GABA(A)-benzodiazepine receptor complex, male Wistar rats and Swiss mice behaviour were tested in the elevated plus maze (EPM). All the doses of the extract, 50, 100 and 150 mg/kg, administered per gavage (vo), 30 min before the behavioural evaluation, induced an anxiolytic effect expressed by: increased number of entries in and time spent in the open arms and percentage of open arm entries: and decreased number of entries and time spent in the closed arms. The treatment of mice with flumazenil (Ro 15-1788), 0.5, 1.0 and 1.5 mg/kg, i.p., 15-min before the administration of hexanic fraction, 100 mg/kg, vo, blocked the hexanic fraction-induced anxiolytic effect. The LD50 for the hexanic fraction was 1512 mg/kg. In conclusion, it was shown that the hexanic fraction of R. brasiliensis induced an anxiolytic effect in rats and mice. This effect can be attributed to a liposoluble principle with low toxicity which may be acting as an agonist on GABA(A)-benzodiazepine receptor complex. (C) 1998 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
Inhibitory serotonergic and cholecystokinergic mechanisms in the lateral parabrachial nucleus and central GABAergic mechanisms are involved in the regulation of water and NaCl intake. In the present study we investigated if the GABA(A) receptors in the lateral parabrachial nucleus are involved in the control of water, NaCl and food intake in rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the lateral parabrachial nucleus were used. Bilateral injections of muscimol (0.2 nmol/0.2 mu l) into the lateral parabrachial nucleus strongly increased 0.3 M NaCl (20.3 +/- 7.2 vs. saline: 2.6 +/- 0.9 ml/180 min) without changing water intake induced by the treatment with the diuretic furosemide combined with low dose of the angiotensin converting enzyme inhibitor captopril s.c. In euhydrated and satiated rats, bilateral lateral parabrachial nucleus injections of muscimol (0.2 and 0.5 nmol/0.2 0) induced 0.3 M NaCl intake (12.1 +/- 6.5 and 32.5 +/- 7.3 ml/180 min, respectively, vs. saline: 0.4 +/- 0.2 ml/180 min) and water intake (5.2 +/- 2.0 and 7.6 +/- 2.8 ml/ 180 min, respectively, vs. saline: 0.8 +/- 0.4 ml/180 min), but no food intake (2 +/- 0.4 g/240 min vs. saline: 1 +/- 0.3 g/240 min). Bilateral lateral parabrachial nucleus injections of the GABAA antagonist bicuculline (1.6 nmol/0.2 mu l) abolished the effects of muscimol (0.5 nmol/0.2 mu l) on 0.3 M NaCl and water intake. Muscimol (0.5 nmol/0.2 mu l) into the lateral parabrachial nucleus also induced a slight ingestion of water (4.2 +/- 1.6 ml/240 min vs. saline: 1.1 +/- 0.3 ml/240 min) when only water was available, a long lasting (for at least 2 h) increase on mean arterial pressure (14 +/- 4 mm Hg, vs. saline: -1 +/- 1 mm Hg) and only a tendency to increase urinary volume and Na+ and K+ renal excretion. Therefore the activation of GABAA receptors in the lateral parabrachial nucleus induces strong NaCl intake, a small ingestion of water and pressor responses, without changes on food intake. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.
Resumo:
Inhibitory mechanisms in the lateral parabrachial nucleus (LPBN) and central GABAergic mechanisms are involved in the regulation of water and NaCl intake. Besides increasing fluid depletion-induced sodium intake, the activation of GABA(A) receptors with muscimol into the LPBN also induces ingestion of 0.3 M NaCl in normonatremic, euhydrated rats. It has been suggested that inhibitory mechanisms activated by osmotic signals are blocked by GABAA receptor activation in the LPBN, thereby increasing hypertonic NaCl intake. Therefore, in the present study we investigated the effects of muscimol injected into the LPBN on water and 0.3 M NaCl intake in hyperosmotic cell-dehydrated rats (rats treated with an intragastric load of 2 M NaCl). Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. In euhydrated rats, muscimol (0.5 nmol/0.2 mu l), bilaterally injected into the LPBN, induced ingestion of 0.3 M NaCl (24.6 +/- 7.9 vs. vehicle: 0.5 +/- 0.3 ml/180 min) and water (6.3 +/- 2.1 vs. vehicle: 0.5 +/- 0.3 ml/180 min). One hour after intragastric 2 M NaCl load (2 ml), bilateral injections of muscimol into the LPBN also induced 0.3 M NaCl intake (22.1 +/- 5.2 vs. vehicle: 0.9 +/- 0.8 ml/210 min) and water intake (16.5 +/- 3.6 vs. vehicle: 7.8 +/- 1.8 ml/210 min). The GABAA antagonist bicuculline (0.4 nmol/0.2 mu l) into the LPBN reduced the effect of muscimol on 0.3 M NaCl intake (7.1 +/- 2.1 ml/210 min). Therefore, the activation of GABAA receptors in the LPBN induces ingestion of 0.3 M NaCl by hyperosmotic cell-dehydrated rats, suggesting that plasma levels of renin or osmolarity do not affect sodium intake after the blockade of LPBN inhibitory mechanisms with muscimol. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study investigated whether perinatal exposure to picrotoxin, a GABA(A) antagonist, modifies the effect of muscimol, a GABA(A) agonist, on the sexual behavior of adult male rats. Two hours after birth and then once daily during the next 9 days of lactation, dams received picrotoxin (0.75 mg/kg subcutaneously) or saline (1 ml/kg subcutaneously). The adult male offspring from the picrotoxin and saline groups received saline (1 ml/kg intraperitoneally) or muscimol (1 mg/kg intraperitoneally), and 15 min later, their sexual behavior was assessed. Muscimol treatment in the saline-exposed group increased the mount and intromission latencies. However, these effects were absent in the picrotoxin-exposed groups. The latencies to first ejaculation, postejaculatory mount, and intromission were decreased in both picrotoxin-exposed groups relative to the saline-exposed groups. The picrotoxin + muscimol-treated rats required more intromissions to ejaculate and the picrotoxin-exposed groups made more ejaculations than the saline-exposed groups. Thus, muscimol treatment did not increase the mount and intromission latencies following picrotoxin exposure, but increased the ejaculation frequency, which did not differ between the picrotoxin + muscimol and the picrotoxin + saline groups. These data indicate that perinatal picrotoxin treatment interfered with GABA(A) receptor development Behavioural Pharmacology 23:703-709 (c) 2012 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Previous studies have suggested that gamma-aminobutyric acid-B (GABA(B)) receptor agonists effectively reduce ethanol intake. The quantification using real-time polymerase chain reaction of Gabbr1 and Gabbr2 mRNA from the prefrontal cortex, hypothalamus, hippocampus, and striatum in mice exposed to an animal model of the addiction developed in our laboratory was performed to evaluate the involvement of the GABAB receptor in ethanol consumption. We used outbred, Swiss mice exposed to a three-bottle free-choice model (water, 5% v/v ethanol, and 10% v/v ethanol) that consisted of four phases: acquisition (AC), withdrawal (W), reexposure (RE), and quinine-adulteration (AD). Based on individual ethanol intake, the mice were classified into three groups: "addicted" (A group; preference for ethanol and persistent consumption during all phases), "heavy" (H group; preference for ethanol and a reduction in ethanol intake in the AD phase compared to AC phase), and "light" (L group; preference for water during all phases). In the prefrontal cortex in the A group, we found high Gabbr1 and Gabbr2 transcription levels, with significantly higher Gabbr1 transcription levels compared with the C (ethanol-naive control mice). L, and H groups. In the hippocampus in the A group, Gabbr2 mRNA levels were significantly lower compared with the C, L, and H groups. In the striatum, we found a significant increase in Gabbr1 transcription levels compared with the C, L, and H groups. No differences in Gabbr1 or Gabbr2 transcription levels were observed in the hypothalamus among groups. In summary, Gabbr1 and Gabbr2 transcription levels were altered in cerebral areas related to drug taking only in mice behaviorally classified as "addicted" drinkers, suggesting that these genes may contribute to high and persistent ethanol consumption. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Baclofen, a GABA(B) agonist, reduces ethanol intake in animals and humans, but the contrary or no effect was also reported. Our previous study demonstrated that mice characterized as "loss of control over ethanol intake" had different Gabbr1 and Gabbr2 transcription levels, which express, respectively, the GABA(B1) and GABA(B2) subunits in brain areas related to addictive behavior. In the present study, we tested baclofen on ethanol intake in mice exposed to the free-choice paradigm. Adult male Swiss mice, individually housed, had free access to three bottles: ethanol (5% and 10%) and water. The protocol had four phases: acquisition (AC, 10 weeks), withdrawal (W, 4 cycles during 2 weeks of 2 day-free-choice and 2 day-only-water), reexposure (RE, 2 weeks), and adulteration of ethanol solutions with quinine (AD, 2 weeks). Mice characterized as "loss of control" (A, n = 11, preference for ethanol in AC and maintenance of ethanol intake levels in AD), heavy (H, n = 11, preference for ethanol in AC and reduction of ethanol intake levels in AD), and light (L n = 16, preference for water in all phases) drinkers were randomly distributed into two subgroups receiving either intraperitoneal injections of all doses of baclofen (1.25, 2.5, and 5.0 mg/kg, given each dose twice in consecutive days) or saline, being exposed to free-choice. Fluid consumption was measured 24 h later. Baclofen reduced ethanol intake in group L In group H a reduction compared to AC was observed. Group A maintained their high ethanol intake even after baclofen treatment. Activation of the GABA(B) receptor depends on the precise balance between the GABA(B1) and GABA(B2) subunits, so the disproportionate transcription levels, we reported in group A, could explain this lack of response to baclofen. These data highlight the importance to test baclofen in individuals with different ethanol drinking profiles, including humans. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Für diese Arbeit wurden sechs neue Benzodiazepinderivate, TC07, TC08, TC09, TC10, TC11 und TC12, hergestellt. Diese wurden mittels Radioligandenbindungsassay sowohl auf ihre Bindungseigenschaften für Membranen des Cerebellum, des Hippo-campus und des Cortex der Ratte hin untersucht, als auch für Membranen von HEK293 Zellen, die transient rekombinante GABAA Rezeptoren exprimierten. Zusätz-lich wurden kompetitive in situ Rezeptorautoradiographien an Rattenhirnschnitten mit den Liganden [3H]Ro15-4513 und [3H]R015-1788 durchgeführt. Zusammen ergaben sich aus diesen Experimenten deutliche Hinweise auf eine Selektivität der Verbindun-gen TC07, TC11 und TC12 für a5-Untereinheiten enthaltende GABAA Rezeptoren mit a5-Affinitäten im niedrigen nanomolaren Bereich. In vivo Bindungsexperimente in Ratten, mit [3H]Ro15-1788 als Tracer und TC07 als Kompetitor, ergaben, dass TC07 mehr [3H]Ro15-1788 im Vorderhirn als im Cerebellum verdrängt. Bezog man die regionale Verteilung der a5-Untereinheit des GABAA Rezep-tors im Rattenhirn mit ein – sehr wenige a5-Untereinheiten im Cerebellum, etwa 20 % der GABAA Rezeptor-Untereinheiten im Hippocampus – untermauerten diese Ergeb-nisse die Vermutung, TC07 könne a5-selektiv sein. Diese Daten bestätigten darü-berhinaus, dass TC07 die Blut-Hirn-Schranke passieren kann. Für elektrophysiologische Messungen mit TC07 und TC12 wurden die oben erwähnten transient transfizierten HEK293 Zellen verwendet, welche die GABAA Rezeptor Unte-reinheitenkombination a5b3g2 exprimierten. Das Dosis-Antwort Verhalten ergab keinen signifikanten Effekt für TC12. Die Daten von TC07 dagegen lassen auf einen schwach negativ modulatorischen Effekt schließen, was, zumindest theoretisch, die Möglichkeit eröffnet, TC07 auch als sogenannten cognitive enhancer einzusetzen. Der errechnete Ki-Wert lag in derselben Größenordnung wie der Ki-Wert, der anhand der Bindungsas-saydaten errechnet wurde. Insgesamt rechtfertigen die bisherigen Ergebnisse die radiochemische Markierung mit 18F von drei der sechs getesteten Verbindungen in der Reihenfolge TC07, TC12 und TC11. Des Weiteren wurde [18F]MHMZ, ein potentiell 5-HT2A selektiver Ligand und PET-Tracer einschließlich Vorläufer und Referenzverbindungen, mit hohen Ausbeuten syn-thetisiert (Herth, Debus et al. 2008). Autoradiographieexperimente mit Rattenhirn-schnitten zeigten hervorragende in situ Bindungseigenschaften der neuen Verbindung. Die Daten wiesen eine hohe Selektivität für 5-HT2A Rezeptoren in Verbindung mit einer niedrigen unspezifischen Bindung auf. [18F]MHMZ erfährt in vivo eine schnelle Metabo-lisierung, wobei ein polarer aktiver Metabolit entsteht, welcher vermutlich nicht die Blut-Hirn-Schranke passieren kann. Transversale, sagittale und coronale Kleintier-PET-Bilder des Rattenhirns zeigten eine hohe Anreicherung im frontalen Cortex und im Striatum, während im Cerebellum so gut wie keine Anreicherung festzustellen war. Diese Verteilung deckt sich mit der bekann-ten Verteilung der 5-HT2A Rezeptoren. Die in vivo Anreicherung scheint sich ebenfalls gut mit der Verteilung der in den Autoradiographieexperimenten gemessenen Bindung zu decken. Nach Berechnungen mit dem 4-Parameter Referenzgewebe Modell beträgt das Bindungspotential (BP) für den frontalen Cortex 1,45. Das Cortex zu Cerebellum Verhältnis wurde auf 2,7 nach 30 Minuten Messzeit bestimmt, was bemerkenswert nah an den von Lundkvist et al. für [11C]MDL 100907 publizierten Daten liegt. Abgesehen von der etwas niedrigeren Affinität waren die gemessenen in vitro, in situ und in vivo Daten denen von [3H]MDL 100907 und [11C]MDL 100907 sehr ähnlich, so dass wir ein [18F]Analogon in der Hand haben, das die bessere Selektivität von MDL 100907 verglichen mit Altanserin mit der längeren Halbwertszeit und den besse-ren Eigenschaften für die klinische Routine von 18F verglichen mit 11C verbindet. Die Ergebnisse von [18F]MHMZ rechtfertigenden weitere Experimente, um diesen Liganden für die klinische Routine am Menschen nutzbar zu machen.
Resumo:
Classical benzodiazepines, such as diazepam, interact with α(x)β(2)γ(2) GABA(A) receptors, x = 1, 2, 3, 5 and modulate their function. Modulation of different receptor isoforms probably results in selective behavioural effects as sedation and anxiolysis. Knowledge of differences in the structure of the binding pocket in different receptor isoforms is of interest for the generation of isoform-specific ligands. We studied here the interaction of the covalently reacting diazepam analogue 3-NCS with α(1)S204Cβ(2)γ(2), α(1)S205Cβ(2)γ(2) and α(1)T206Cβ(2)γ(2) and with receptors containing the homologous mutations in α(2)β(2)γ(2), α(3)β(2)γ(2), α(5)β(1/2)γ(2) and α(6)β(2)γ(2). The interaction was studied using radioactive ligand binding and at the functional level using electrophysiological techniques. Both strategies gave overlapping results. Our data allow conclusions about the relative apposition of α(1)S204Cβ(2)γ(2), α(1)S205Cβ(2)γ(2) and α(1)T206Cβ(2)γ(2) and homologous positions in α(2), α(3), α(5) and α(6) with C-atom adjacent to the keto-group in diazepam. Together with similar data on the C-atom carrying Cl in diazepam, they indicate that the architecture of the binding site for benzodiazepines differs in each GABA(A) receptor isoform α(1)β(2)γ(2), α(2)β(2)γ(2), α(3)β(2)γ(2), α(5)β(1/2)γ(2) and α(6)β(2)γ(2).
Resumo:
Rimonabant (SR141716) and the structurally related AM251 are widely used in pharmacological experiments as selective cannabinoid receptor CB(1) antagonists / inverse agonists. Concentrations of 0.5-10 µM are usually applied in in vitro experiments. We intended to show that these drugs did not act at GABA(A) receptors but found a significant positive allosteric modulation instead.
Resumo:
The formation of alpha1beta2gamma2epsilon receptors suggests that the epsilon subunit does not displace the single gamma2 subunit in alpha1beta2gamma2 receptors. Thus, epsilon must replace alpha and/or beta subunit(s) if the pentameric receptor structure is to be preserved. To assess the potential for which subunit is replaced in alphabetaepsilon and alphabetagammaepsilon receptors we analyzed the assembly and functional expression of the epsilon subunit with respect to alpha1, beta2 and gamma2 subunits. Using concatenated subunits, we have determined that epsilon is capable of substituting for either (but not both) of the alpha subunits, one of the beta subunits, and possibly the gamma2 subunit. However, the most likely sites at which the epsilon subunit may contribute to receptor function appears to be at position 1 (replaces alpha1) in alphabetagammaepsilon (varepsilon-beta2-alpha1-beta2-gamma2) receptors, or at position 4 (replaces beta2) in alphabetaepsilon (alpha1-beta2-alpha1-varepsilon-beta2) receptors. In both cases, it appears that only a single GABA binding site is present.
Resumo:
There is a significant clinical need to identify novel ligands with high selectivity and potency for GABA(A), GABA(C) and glycine receptor Cl- channels. Two recently developed, yellow fluorescent protein variants (YFP-I152L and YFP-V163S) are highly sensitive to quench by small anions and are thus suited to reporting anionic influx into cells. The aim of this study was to establish the optimal conditions for using these constructs for high-throughput screening of GABA(A), GABA(C) and glycine receptors transiently expressed in HEK293 cells. We found that a 70% fluorescence reduction was achieved by quenching YFP-I152L with a 10 s influx of I- ions, driven by an extemal I- concentration of at least 50 mM. The fluorescence quench was rapid, with a mean time constant of 3 s. These responses were similar for all anion receptor types studied. We also show the assay is sufficiently sensitive to measure agonist and antagonist concentration-responses using either imaging- or photomultiplier-based detection systems. The robustness, sensitivity and low cost of this assay render it suited for high-throughput screening of transiently expressed anionic ligand-gated channels. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The effects of gamma-aminobutyric acid (GABA) on the electrophysiological properties of intracardiac neurones were investigated in the intracardiac ganglion plexus in situ and in dissociated neurones from neonatal, juvenile and adult rat hearts. Focal application of GABA evoked a depolarizing, excitatory response in both intact and dissociated intracardiac ganglion neurones. Under voltage clamp, both GABA and muscimol elicited inward currents at -60 mV in a concentration-dependent manner. The fast, desensitizing currents were mimicked by the GABA(A) receptor agonists muscimol and taurine, and inhibited by the GABA(A) receptor antagonists, bicuculline and picrotoxin. The GABA(A0) antagonist (1,2,5,6-tetrahydropyridin-4-yl)methyl phosphonic acid (TPMPA), had no effect on GABA-induced currents, suggesting that GABA(A) receptor-channels mediate the response. The GABA-evoked current amplitude recorded from dissociated neurones was age dependent whereby the peak current density measured at -100 mV was similar to 20 times higher for intracardiac neurones obtained from neonatal rats (P2-5) compared with adult rats (P45-49). The decrease in GABA sensitivity occurred during the first two postnatal weeks and coincides with maturation of the sympathetic innervation of the rat heart. Immunohistochemical staining using antibodies against GABA demonstrate the presence of GABA in the intracardiac ganglion plexus of the neonatal rat heart. Taken together, these results suggest that GABA and taurine may act as modulators of neurotransmission and cardiac function in the developing mammalian intrinsic cardiac nervous system.