920 resultados para Reactive Probabilistic Automata
Resumo:
Image annotation is a significant step towards semantic based image retrieval. Ontology is a popular approach for semantic representation and has been intensively studied for multimedia analysis. However, relations among concepts are seldom used to extract higher-level semantics. Moreover, the ontology inference is often crisp. This paper aims to enable sophisticated semantic querying of images, and thus contributes to 1) an ontology framework to contain both visual and contextual knowledge, and 2) a probabilistic inference approach to reason the high-level concepts based on different sources of information. The experiment on a natural scene database from LabelMe database shows encouraging results.
Resumo:
To date, automatic recognition of semantic information such as salient objects and mid-level concepts from images is a challenging task. Since real-world objects tend to exist in a context within their environment, the computer vision researchers have increasingly incorporated contextual information for improving object recognition. In this paper, we present a method to build a visual contextual ontology from salient objects descriptions for image annotation. The ontologies include not only partOf/kindOf relations, but also spatial and co-occurrence relations. A two-step image annotation algorithm is also proposed based on ontology relations and probabilistic inference. Different from most of the existing work, we specially exploit how to combine representation of ontology, contextual knowledge and probabilistic inference. The experiments show that image annotation results are improved in the LabelMe dataset.
Resumo:
The ICU is an integral part of any hospital and is under great load from patient arrivals as well as resource limitations. Scheduling of patients in the ICU is complicated by the two general types; elective surgery and emergency arrivals. This complicated situation is handled by creating a tentative initial schedule and then reacting to uncertain arrivals as they occur. For most hospitals there is little or no flexibility in the number of beds that are available for use now or in the future. We propose an integer programming model to handle a parallel machine reacting system for scheduled and unscheduled arrivals.
Resumo:
The loss of valuable water resources due to pipe failure has become a major problem in Australia, especially in areas under high level of water restrictions. Generally pipe failure occurs due to a combination of physical and environmental factors. Stresses induced by shrinking and swelling of reactive soils are one of the major factors affecting the performance of buried pipes. This paper presents the details of a field instrumentation undertaken to monitor the performance of an in-service water reticulation pipe buried in a reactive soil and subjected to seasonal climatic changes.
Automation of an underground mining vehicle using reactive navigation and opportunistic localization
Resumo:
This paper describes the implementation of an autonomous navigation system onto a 30 tonne Load-Haul-Dump truck. The control architecture is based on a robust reactive wall-following behaviour. To make it purposeful we provide driving hints derived from an approximate nodal-map. For most of the time, the vehicle is driven with weak localization (odometry). This need only be improved at intersections where decisions must be made - a technique we refer to as opportunistic localization. The truck has achieved full-speed autonomous operation at an artificial test mine, and subsequently, at a operational underground mine.
Resumo:
Describes how many of the navigation techniques developed by the robotics research community over the last decade may be applied to a class of underground mining vehicles (LHDs and haul trucks). We review the current state-of-the-art in this area and conclude that there are essentially two basic methods of navigation applicable. We describe an implementation of a reactive navigation system on a 30 tonne LHD which has achieved full-speed operation at a production mine.
Resumo:
Objectives: To explore whether people's organ donation consent decisions occur via a reasoned and/or social reaction pathway. --------- Design: We examined prospectively students' and community members' decisions to register consent on a donor register and discuss organ donation wishes with family. --------- Method: Participants completed items assessing theory of planned behaviour (TPB; attitude, subjective norm, perceived behavioural control (PBC)), prototype/willingness model (PWM; donor prototype favourability/similarity, past behaviour), and proposed additional influences (moral norm, self-identity, recipient prototypes) for registering (N=339) and discussing (N=315) intentions/willingness. Participants self-reported their registering (N=177) and discussing (N=166) behaviour 1 month later. The utility of the (1) TPB, (2) PWM, (3) augmented TPB with PWM, and (4) augmented TPB with PWM and extensions was tested using structural equation modelling for registering and discussing intentions/willingness, and logistic regression for behaviour. --------- Results: While the TPB proved a more parsimonious model, fit indices suggested that the other proposed models offered viable options, explaining greater variance in communication intentions/willingness. The TPB, augmented TPB with PWM, and extended augmented TPB with PWM best explained registering and discussing decisions. The proposed and revised PWM also proved an adequate fit for discussing decisions. Respondents with stronger intentions (and PBC for registering) had a higher likelihood of registering and discussing. --------- Conclusions: People's decisions to communicate donation wishes may be better explained via a reasoned pathway (especially for registering); however, discussing involves more reactive elements. The role of moral norm, self-identity, and prototypes as influences predicting communication decisions were highlighted also.
Resumo:
This paper describes an application of decoupled probabilistic world modeling to achieve team planning. The research is based on the principle that the action selection mechanism of a member in a robot team can select an effective action if a global world model is available to all team members. In the real world, the sensors are imprecise, and are individual to each robot, hence providing each robot a partial and unique view about the environment. We address this problem by creating a probabilistic global view on each agent by combining the perceptual information from each robot. This probabilistic view forms the basis for selecting actions to achieve the team goal in a dynamic environment. Experiments have been carried out to investigate the effectiveness of this principle using custom-built robots for real world performance, in addition, to extensive simulation results. The results show an improvement in team effectiveness when using probabilistic world modeling based on perception sharing for team planning.
Resumo:
This paper describes an autonomous navigation system for a large underground mining vehicle. The control architecture is based on a robust reactive wall-following behaviour. To make it purposeful we provide driving hints derived from an approximate nodal-map. For most of the time, the vehicle is driven with weak localization (odometry). This need only be improved at intersections where decisions must be made – a technique we refer to as opportunistic localization. The paper briefly reviews absolute and relative navigation strategies, and describes an implementation of a reactive navigation system on a 30 tonne Load-Haul-Dump truck. This truck has achieved full-speed autonomous operation at an artificial test mine, and subsequently, at a operational underground mine.
Resumo:
Probabilistic robotics, most often applied to the problem of simultaneous localisation and mapping (SLAM), requires measures of uncertainly to accompany observations of the environment. This paper describes how uncertainly can be characterised for a vision system that locates coloured landmark in a typical laboratory environment. The paper describes a model of the uncertainly in segmentation, the internal camera model and the mounting of the camera on the robot. It =plains the implementation of the system on a laboratory robot, and provides experimental results that show the coherence of the uncertainly model,
Resumo:
System analysis within the traction power system is vital to the design and operation of an electrified railway. Loads in traction power systems are often characterised by their mobility, wide range of power variations, regeneration and service dependence. In addition, the feeding systems may take different forms in AC electrified railways. Comprehensive system studies are usually carried out by computer simulation. A number of traction power simulators have been available and they allow calculation of electrical interaction among trains and deterministic solutions of the power network. In the paper, a different approach is presented to enable load-flow analysis on various feeding systems and service demands in AC railways by adopting probabilistic techniques. It is intended to provide a different viewpoint to the load condition. Simulation results are given to verify the probabilistic-load-flow models.
Resumo:
Power load flow analysis is essential for system planning, operation, development and maintenance. Its application on railway supply system is no exception. Railway power supplies system distinguishes itself in terms of load pattern and mobility, as well as feeding system structure. An attempt has been made to apply probability load flow (PLF) techniques on electrified railways in order to examine the loading on the feeding substations and the voltage profiles of the trains. This study is to formulate a simple and reliable model to support the necessary calculations for probability load flow analysis in railway systems with autotransformer (AT) feeding system, and describe the development of a software suite to realise the computation.