974 resultados para Random noise
Resumo:
New compensation methods are presented that can greatly reduce the slit errors (i.e. transition location errors) and interval errors induced due to non-idealities in optical incremental encoders (square-wave). An M/T-type, constant sample-time digital tachometer (CSDT) is selected for measuring the velocity of the sensor drives. Using this data, three encoder compensation techniques (two pseudoinverse based methods and an iterative method) are presented that improve velocity measurement accuracy. The methods do not require precise knowledge of shaft velocity. During the initial learning stage of the compensation algorithm (possibly performed in-situ), slit errors/interval errors are calculated through pseudoinversebased solutions of simple approximate linear equations, which can provide fast solutions, or an iterative method that requires very little memory storage. Subsequent operation of the motion system utilizes adjusted slit positions for more accurate velocity calculation. In the theoretical analysis of the compensation of encoder errors, encoder error sources such as random electrical noise and error in estimated reference velocity are considered. Initially, the proposed learning compensation techniques are validated by implementing the algorithms in MATLAB software, showing a 95% to 99% improvement in velocity measurement. However, it is also observed that the efficiency of the algorithm decreases with the higher presence of non-repetitive random noise and/or with the errors in reference velocity calculations. The performance improvement in velocity measurement is also demonstrated experimentally using motor-drive systems, each of which includes a field-programmable gate array (FPGA) for CSDT counting/timing purposes, and a digital-signal-processor (DSP). Results from open-loop velocity measurement and closed-loop servocontrol applications, on three optical incremental square-wave encoders and two motor drives, are compiled. While implementing these algorithms experimentally on different drives (with and without a flywheel) and on encoders of different resolutions, slit error reductions of 60% to 86% are obtained (typically approximately 80%).
Resumo:
The application of chemometrics in food science has revolutionized the field by allowing the creation of models able to automate a broad range of applications such as food authenticity and food fraud detection. In order to create effective and general models able to address the complexity of real life problems, a vast amount of varied training samples are required. Training dataset has to cover all possible types of sample and instrument variability. However, acquiring a varied amount of samples is a time consuming and costly process, in which collecting samples representative of the real world variation is not always possible, specially in some application fields. To address this problem, a novel framework for the application of data augmentation techniques to spectroscopic data has been designed and implemented. This is a carefully designed pipeline of four complementary and independent blocks which can be finely tuned depending on the desired variance for enhancing model's robustness: a) blending spectra, b) changing baseline, c) shifting along x axis, and d) adding random noise.
This novel data augmentation solution has been tested in order to obtain highly efficient generalised classification model based on spectroscopic data. Fourier transform mid-infrared (FT-IR) spectroscopic data of eleven pure vegetable oils (106 admixtures) for the rapid identification of vegetable oil species in mixtures of oils have been used as a case study to demonstrate the influence of this pioneering approach in chemometrics, obtaining a 10% improvement in classification which is crucial in some applications of food adulteration.
Resumo:
La théorie de l'information quantique s'est développée à une vitesse fulgurante au cours des vingt dernières années, avec des analogues et extensions des théorèmes de codage de source et de codage sur canal bruité pour la communication unidirectionnelle. Pour la communication interactive, un analogue quantique de la complexité de la communication a été développé, pour lequel les protocoles quantiques peuvent performer exponentiellement mieux que les meilleurs protocoles classiques pour certaines tâches classiques. Cependant, l'information quantique est beaucoup plus sensible au bruit que l'information classique. Il est donc impératif d'utiliser les ressources quantiques à leur plein potentiel. Dans cette thèse, nous étudions les protocoles quantiques interactifs du point de vue de la théorie de l'information et étudions les analogues du codage de source et du codage sur canal bruité. Le cadre considéré est celui de la complexité de la communication: Alice et Bob veulent faire un calcul quantique biparti tout en minimisant la quantité de communication échangée, sans égard au coût des calculs locaux. Nos résultats sont séparés en trois chapitres distincts, qui sont organisés de sorte à ce que chacun puisse être lu indépendamment. Étant donné le rôle central qu'elle occupe dans le contexte de la compression interactive, un chapitre est dédié à l'étude de la tâche de la redistribution d'état quantique. Nous prouvons des bornes inférieures sur les coûts de communication nécessaires dans un contexte interactif. Nous prouvons également des bornes atteignables avec un seul message, dans un contexte d'usage unique. Dans un chapitre subséquent, nous définissons une nouvelle notion de complexité de l'information quantique. Celle-ci caractérise la quantité d'information, plutôt que de communication, qu'Alice et Bob doivent échanger pour calculer une tâche bipartie. Nous prouvons beaucoup de propriétés structurelles pour cette quantité, et nous lui donnons une interprétation opérationnelle en tant que complexité de la communication quantique amortie. Dans le cas particulier d'entrées classiques, nous donnons une autre caractérisation permettant de quantifier le coût encouru par un protocole quantique qui oublie de l'information classique. Deux applications sont présentées: le premier résultat général de somme directe pour la complexité de la communication quantique à plus d'une ronde, ainsi qu'une borne optimale, à un terme polylogarithmique près, pour la complexité de la communication quantique avec un nombre de rondes limité pour la fonction « ensembles disjoints ». Dans un chapitre final, nous initions l'étude de la capacité interactive quantique pour les canaux bruités. Étant donné que les techniques pour distribuer de l'intrication sont bien étudiées, nous nous concentrons sur un modèle avec intrication préalable parfaite et communication classique bruitée. Nous démontrons que dans le cadre plus ardu des erreurs adversarielles, nous pouvons tolérer un taux d'erreur maximal de une demie moins epsilon, avec epsilon plus grand que zéro arbitrairement petit, et ce avec un taux de communication positif. Il s'ensuit que les canaux avec bruit aléatoire ayant une capacité positive pour la transmission unidirectionnelle ont une capacité positive pour la communication interactive quantique. Nous concluons avec une discussion de nos résultats et des directions futures pour ce programme de recherche sur une théorie de l'information quantique interactive.
Resumo:
Our understanding of the climate system has been revolutionized recently, by the development of sophisticated computer models. The predictions of such models are used to formulate international protocols, intended to mitigate the severity of global warming and its impacts. Yet, these models are not perfect representations of reality, because they remove from explicit consideration many physical processes which are known to be key aspects of the climate system, but which are too small or fast to be modelled. The purpose of this paper is to give a personal perspective of the current state of knowledge regarding the problem of unresolved scales in climate models. A recent novel solution to the problem is discussed, in which it is proposed, somewhat counter-intuitively, that the performance of models may be improved by adding random noise to represent the unresolved processes.
Resumo:
Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme.
Resumo:
The main objective of the present thesis was the seismic interpretation and seismic attribute analysis of the 3D seismic data from the Siririzinho high, located in the Sergipe Sub-basin (southern portion of Sergipe-Alagoas Basin). This study has enabled a better understanding of the stratigraphy and structure that the Siririzinho high experienced during its development. In a first analysis, we used two types of filters: the dip-steered median filter, was used to remove random noise and increase the lateral continuity of reflections, and fault-enhancement filter was applied to enhance the reflection discontinuities. After this filtering step similarity and curvature attributes were applied in order to identify and enhance the distribution of faults and fractures. The use of attributes and filtering greatly contributed to the identification and enhancement of continuity of faults. Besides the application of typical attributes (similarity and curvature) neural network and fingerprint techniques were also used, which generate meta-attributes, also aiming to highlight the faults; however, the results were not satisfactory. In a subsequent step, well log and seismic data analysis were performed, which allowed the understanding of the distribution and arrangement of sequences that occur in the Siririzinho high, as well as an understanding of how these units are affected by main structures in the region. The Siririzinho high comprises an elongated structure elongated in the NS direction, capped by four seismo-sequences (informally named, from bottom to top, the sequences I to IV, plus the top of the basement). It was possible to recognize the main NS-oriented faults, which especially affect the sequences I and II, and faults oriented NE-SW, that reach the younger sequences, III and IV. Finally, with the interpretation of seismic horizons corresponding to each of these sequences, it was possible to define a better understanding of geometry, deposition and structural relations in the area.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Latent fingerprints are routinely found at crime scenes due to the inadvertent contact of the criminals' finger tips with various objects. As such, they have been used as crucial evidence for identifying and convicting criminals by law enforcement agencies. However, compared to plain and rolled prints, latent fingerprints usually have poor quality of ridge impressions with small fingerprint area, and contain large overlap between the foreground area (friction ridge pattern) and structured or random noise in the background. Accordingly, latent fingerprint segmentation is a difficult problem. In this paper, we propose a latent fingerprint segmentation algorithm whose goal is to separate the fingerprint region (region of interest) from background. Our algorithm utilizes both ridge orientation and frequency features. The orientation tensor is used to obtain the symmetric patterns of fingerprint ridge orientation, and local Fourier analysis method is used to estimate the local ridge frequency of the latent fingerprint. Candidate fingerprint (foreground) regions are obtained for each feature type; an intersection of regions from orientation and frequency features localizes the true latent fingerprint regions. To verify the viability of the proposed segmentation algorithm, we evaluated the segmentation results in two aspects: a comparison with the ground truth foreground and matching performance based on segmented region. © 2012 IEEE.
Resumo:
Este trabalho apresenta uma metodologia para o estudo da ambiguidade na interpretação de dados geofísicos. Várias soluções alternativas, representativas da região de maior ambiguidade no espaço de parâmetros são obtidas, sendo posteriormente grupadas e ordenadas pela análise fatorial modo Q. Esta metodologia foi aplicada a dados sintéticos de campo potencial simulando-se causas de ambiguidade como discretização e truncamento da anomalia e a presença de ruídos aleatório e geológico. Um único prisma foi usado como modelo interpretativo, sendo a espessura a principal causa de ambiguidade tanto na gravimetria como na magnetometria. Segue-se a profundidade do topo sempre associada à espessura, quando o sinal da anomalia é alto. Quando a anomalia tem sinal baixo, a largura torna-se o segundo parâmetro mais importante, também associada à espessura. Ao contrário da presença de interferências geológicas, a presença de ruído aleatório nos campos, não é fator importante na ambiguidade. A aplicação da metodologia a dados reais ilustra o papel desta análise na caracterização de soluções alternativas e a importância da informação a priori na caracterização das causas de ambiguidade. A metodologia apresentada pode ser empregada em diversos estágios de um programa de prospecção fornecendo em cada estágio uma análise dos principais fatores causadores da ambiguidade, que poderá ser util no planejamento dos estágios seguintes. Comparada a outros métodos de análise de ambiguidade, como por exemplo regiões de confiança, a metodologia estudada destaca-se por não precisar satisfazer premissas estatísticas sobre a distribuição dos erros.
Resumo:
Tradicionalmente, o método dos mínimos quadrados tem sido empregado na inversão não linear de dados de campo potencial. No caso em que as observações dos campos gravimétrico ou magnético contém apenas ruído Gaussiano. O método dos mínimos quadrados não apresenta problemas. Entretanto, quando as observações são perturbadas por ruído não Gaussiano, ou mesmo por ruído não aleatório, como é o caso de muitos ruídos geológicos, o método dos mínimos quadrados torna-se bastante ineficiente, e métodos alternativos devem ser empregados a fim de produzir interpretações realísticas. Neste trabalho, uma comparação é feita entre os métodos dos mínimos quadrados, dos mínimos absolutos e do ajuste-M, aplicados à inversão não linear de dados de campo potencial. A comparação é efetuada usando-se dados teóricos, onde diversas situações geológicas são simuladas. Os resultados mostram que na presença de ruído geológico, caracterizado por pequeno corpo raso acima do corpo principal, ou por corpo grande, adjacente ao corpo principal, o ajuste-M apresenta desempenho muito superior ao dos mínimos quadrados e dos mínimos absolutos. Na presença de ruído Gaussiano, entretanto, o ajuste-M tem um desempenho inferior aos outros dois métodos. Como o ruído Gaussiano é um ruído branco, parte dele pode ser removido por um filtro passa baixa adequado, sem muita perda do sinal, o que não ocorre com o ruído geológico que contém componentes importantes de baixo número de onda. Desse modo o ajuste-M se torna uma ferramenta importante na interpretação de áreas geologicamente complexas, onde é comum a contaminação das anomalias por ruído geológico. Os três métodos em estudo são aplicados a uma anomalia magnética real causada por uma intrusão de diabásio em forma de dique, em sedimentos arenosos da formação Piauí na Bacia do Parnaíba. Os três métodos apresentaram resultados semelhantes indicando que tanto o nível de ruído Gaussiano como geológico são baixos nesta anomalia.
Resumo:
This paper presents preliminary results to determine small displacements of a global positioning system (GPS) antenna fastened to a structure using only one L1 GPS receiver. Vibrations, periodic or not, are common in large structures, such as bridges, footbridges, tall buildings, and towers under dynamic loads. The behavior in time and frequency leads to structural analysis studies. The hypothesis of this article is that any large structure that presents vibrations in the centimeter-to-millimeter range can be monitored by phase measurements of a single L1 receiver with a high data rate, as long as the direction of the displacement is pointing to a particular satellite. Within this scenario, the carrier phase will be modulated by antenna displacement. During a period of a few dozen seconds, the relative displacement to the satellite, the satellite clock, and the atmospheric phase delays can be assumed as a polynomial time function. The residuals from a polynomial adjustment contain the phase modulation owing to small displacements, random noise, receiver clock short time instabilities, and multipath. The results showed that it is possible to detect displacements of centimeters in the phase data of a single satellite and millimeters in the difference between the phases of two satellites. After applying a periodic nonsinusoidal displacement of 10 m to the antenna, it is clearly recovered in the difference of the residuals. The time domain spectrum obtained by the fast Fourier transform (FFT) exhibited a defined peak of the third harmonic much more than the random noise using the proposed third-degree polynomial model. DOI: 10.1061/(ASCE)SU.1943-5428.0000070. (C) 2012 American Society of Civil Engineers.
Resumo:
In the past decade, the advent of efficient genome sequencing tools and high-throughput experimental biotechnology has lead to enormous progress in the life science. Among the most important innovations is the microarray tecnology. It allows to quantify the expression for thousands of genes simultaneously by measurin the hybridization from a tissue of interest to probes on a small glass or plastic slide. The characteristics of these data include a fair amount of random noise, a predictor dimension in the thousand, and a sample noise in the dozens. One of the most exciting areas to which microarray technology has been applied is the challenge of deciphering complex disease such as cancer. In these studies, samples are taken from two or more groups of individuals with heterogeneous phenotypes, pathologies, or clinical outcomes. these samples are hybridized to microarrays in an effort to find a small number of genes which are strongly correlated with the group of individuals. Eventhough today methods to analyse the data are welle developed and close to reach a standard organization (through the effort of preposed International project like Microarray Gene Expression Data -MGED- Society [1]) it is not unfrequant to stumble in a clinician's question that do not have a compelling statistical method that could permit to answer it.The contribution of this dissertation in deciphering disease regards the development of new approaches aiming at handle open problems posed by clinicians in handle specific experimental designs. In Chapter 1 starting from a biological necessary introduction, we revise the microarray tecnologies and all the important steps that involve an experiment from the production of the array, to the quality controls ending with preprocessing steps that will be used into the data analysis in the rest of the dissertation. While in Chapter 2 a critical review of standard analysis methods are provided stressing most of problems that In Chapter 3 is introduced a method to adress the issue of unbalanced design of miacroarray experiments. In microarray experiments, experimental design is a crucial starting-point for obtaining reasonable results. In a two-class problem, an equal or similar number of samples it should be collected between the two classes. However in some cases, e.g. rare pathologies, the approach to be taken is less evident. We propose to address this issue by applying a modified version of SAM [2]. MultiSAM consists in a reiterated application of a SAM analysis, comparing the less populated class (LPC) with 1,000 random samplings of the same size from the more populated class (MPC) A list of the differentially expressed genes is generated for each SAM application. After 1,000 reiterations, each single probe given a "score" ranging from 0 to 1,000 based on its recurrence in the 1,000 lists as differentially expressed. The performance of MultiSAM was compared to the performance of SAM and LIMMA [3] over two simulated data sets via beta and exponential distribution. The results of all three algorithms over low- noise data sets seems acceptable However, on a real unbalanced two-channel data set reagardin Chronic Lymphocitic Leukemia, LIMMA finds no significant probe, SAM finds 23 significantly changed probes but cannot separate the two classes, while MultiSAM finds 122 probes with score >300 and separates the data into two clusters by hierarchical clustering. We also report extra-assay validation in terms of differentially expressed genes Although standard algorithms perform well over low-noise simulated data sets, multi-SAM seems to be the only one able to reveal subtle differences in gene expression profiles on real unbalanced data. In Chapter 4 a method to adress similarities evaluation in a three-class prblem by means of Relevance Vector Machine [4] is described. In fact, looking at microarray data in a prognostic and diagnostic clinical framework, not only differences could have a crucial role. In some cases similarities can give useful and, sometimes even more, important information. The goal, given three classes, could be to establish, with a certain level of confidence, if the third one is similar to the first or the second one. In this work we show that Relevance Vector Machine (RVM) [2] could be a possible solutions to the limitation of standard supervised classification. In fact, RVM offers many advantages compared, for example, with his well-known precursor (Support Vector Machine - SVM [3]). Among these advantages, the estimate of posterior probability of class membership represents a key feature to address the similarity issue. This is a highly important, but often overlooked, option of any practical pattern recognition system. We focused on Tumor-Grade-three-class problem, so we have 67 samples of grade I (G1), 54 samples of grade 3 (G3) and 100 samples of grade 2 (G2). The goal is to find a model able to separate G1 from G3, then evaluate the third class G2 as test-set to obtain the probability for samples of G2 to be member of class G1 or class G3. The analysis showed that breast cancer samples of grade II have a molecular profile more similar to breast cancer samples of grade I. Looking at the literature this result have been guessed, but no measure of significance was gived before.
Resumo:
Vibrations, Posture, and the Stabilization of Gaze: An Experimental Study on Impedance Control R. KREDEL, A. GRIMM & E.-J. HOSSNER University of Bern, Switzerland Introduction Franklin and Wolpert (2011) identify impedance control, i.e., the competence to resist changes in position, velocity or acceleration caused by environmental disturbances, as one of five computational mechanisms which allow for skilled and fluent sen-sorimotor behavior. Accordingly, impedance control is of particular interest in situa-tions in which the motor task exhibits unpredictable components as it is the case in downhill biking or downhill skiing. In an experimental study, the question is asked whether impedance control, beyond its benefits for motor control, also helps to stabi-lize gaze what, in turn, may be essential for maintaining other control mechanisms (e.g., the internal modeling of future states) in an optimal range. Method In a 3x2x4 within-subject ANOVA design, 72 participants conducted three tests on visual acuity and contrast (Landolt / Grating and Vernier) in two different postures (standing vs. squat) on a platform vibrating at four different frequencies (ZEPTOR; 0 Hz, 4 Hz, 8 Hz, 12 Hz; no random noise; constant amplitude) in a counterbalanced or-der with 1-minute breaks in-between. In addition, perceived exertion (Borg) was rated by participants after each condition. Results For Landolt and Grating, significant main effects for posture and frequency are re-vealed, representing lower acuity/contrast thresholds for standing and for higher fre-quencies in general, as well as a significant interaction (p < .05), standing for in-creasing posture differences with increasing frequencies. Overall, performance could be maintained at the 0 Hz/standing level up to a frequency of 8 Hz, if bending of the knees was allowed. The fact that this result is not only due to exertion is proved by the Borg ratings showing significant main effects only, i.e., higher exertion scores for standing and for higher frequencies, but no significant interaction (p > .40). The same pattern, although not significant, is revealed for the Vernier test. Discussion Apparently, postures improving impedance control not only turn out to help to resist disturbances but also assist in stabilizing gaze in spite of these perturbations. Con-sequently, studying the interaction of these control mechanisms in complex unpre-dictable environments seems to be a fruitful field of research for the future. References Franklin, D. W., & Wolpert, D. M. (2011). Computational mechanisms of sensorimotor control. Neuron, 72, 425-442.
Resumo:
El objetivo del PFC es el diseño e implementación de una aplicación que funcione como osciloscopio, analizador de espectro y generador de funciones virtual, todo dentro de la misma aplicacion. Mediante una tarjeta de adquisición de datos tomaremos muestras de señales del mundo real (sistema analógico) para generar datos que puedan ser manipulados por un ordenador (sistema digital). Con esta misma tarjeta también se podrán generar señales básicas, tales como señales senoidales, cuadradas.... y además se ha añadido la funcionalidad de generar señales moduladas en frecuencia, señales tipo Chirp (usadas comúnmente tanto en aplicaciones sonar y radar, como en transmisión óptica) o PRN (ruido pseudo-aleatorio que consta de una secuencia determinista de pulsos que se repite cada periodo, usada comúnmente en receptores GPS), como también señales ampliamente conocidas como el ruido blanco Gaussiano o el ruido blanco uniforme. La aplicación mostrará con detalle las señales adquiridas y analizará de diversas maneras esas señales. Posee la función de enventanado de los tipos de ventana mas comunes, respuesta en frecuencia, transformada de Fourier, etc. La configuración es elegida por el usuario en un entorno amigable y de visualización atractiva. The objective of the PFC is the design and implementation of an application that works as oscilloscope, spectrum analyzer and virtual signal generator, all within the same application. Through a data acquisition card, the user can take samples of real-world signals (analog system) to generate data that can be manipulated by a computer (digital system). This same card can also generate basic signals, such as sine waves, square waves, sawtooth waves.... and further has added other functionalities as frequency modulated signals generation, Chirp signals type generation (commonly used in both sonar and radar applications, such as optical transmission) or PRN (pseudo-random noise sequence comprising a deterministic pulse that repeats every period, commonly used in GPS receivers). It also can generate widely known as Gaussian white noise signals or white noise uniform signals. The application will show in detail the acquired signals and will analyze these signals in different ways selected by the user. Windowing function has the most common window types, frequency response, Fourier transform are examples of what kind of analyzing that can be processed. The configuration is chosen by the user throught friendly and attractive displays and panels.
Resumo:
Este proyecto se centra en la implementación de un sistema de control activo de ruido mediante algoritmos genéticos. Para ello, se ha tenido en cuenta el tipo de ruido que se quiere cancelar y el diseño del controlador, parte fundamental del sistema de control. El control activo de ruido sólo es eficaz a bajas frecuencias, hasta los 250 Hz, justo para las cuales los elementos pasivos pierden efectividad, y en zonas o recintos de pequeñas dimensiones y conductos. El controlador ha de ser capaz de seguir todas las posibles variaciones del campo acústico que puedan producirse (variaciones de fase, de frecuencia, de amplitud, de funciones de transferencia electro-acústicas, etc.). Su funcionamiento está basado en algoritmos FIR e IIR adaptativos. La elección de un tipo de filtro u otro depende de características tales como linealidad, causalidad y número de coeficientes. Para que la función de transferencia del controlador siga las variaciones que surgen en el entorno acústico de cancelación, tiene que ir variando el valor de los coeficientes del filtro mediante un algoritmo adaptativo. En este proyecto se emplea como algoritmo adaptativo un algoritmo genético, basado en la selección biológica, es decir, simulando el comportamiento evolutivo de los sistemas biológicos. Las simulaciones se han realizado con dos tipos de señales: ruido de carácter aleatorio (banda ancha) y ruido periódico (banda estrecha). En la parte final del proyecto se muestran los resultados obtenidos y las conclusiones al respecto. Summary. This project is focused on the implementation of an active noise control system using genetic algorithms. For that, it has been taken into account the noise type wanted to be canceled and the controller design, a key part of the control system. The active noise control is only effective at low frequencies, up to 250 Hz, for which the passive elements lose effectiveness, and in small areas or enclosures and ducts. The controller must be able to follow all the possible variations of the acoustic field that might be produced (phase, frequency, amplitude, electro-acoustic transfer functions, etc.). It is based on adaptive FIR and IIR algorithms. The choice of a kind of filter or another depends on characteristics like linearity, causality and number of coefficients. Moreover, the transfer function of the controller has to be changing filter coefficients value thought an adaptive algorithm. In this project a genetic algorithm is used as adaptive algorithm, based on biological selection, simulating the evolutionary behavior of biological systems. The simulations have been implemented with two signal types: random noise (broadband) and periodic noise (narrowband). In the final part of the project the results and conclusions are shown.