982 resultados para Random Access


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In wireless sensor networks (WSNs) the communication traffic is often time and space correlated, where multiple nodes in a proximity start transmitting at the same time. Such a situation is known as spatially correlated contention. The random access methods to resolve such contention suffers from high collision rate, whereas the traditional distributed TDMA scheduling techniques primarily try to improve the network capacity by reducing the schedule length. Usually, the situation of spatially correlated contention persists only for a short duration and therefore generating an optimal or sub-optimal schedule is not very useful. On the other hand, if the algorithm takes very large time to schedule, it will not only introduce additional delay in the data transfer but also consume more energy. To efficiently handle the spatially correlated contention in WSNs, we present a distributed TDMA slot scheduling algorithm, called DTSS algorithm. The DTSS algorithm is designed with the primary objective of reducing the time required to perform scheduling, while restricting the schedule length to maximum degree of interference graph. The algorithm uses randomized TDMA channel access as the mechanism to transmit protocol messages, which bounds the message delay and therefore reduces the time required to get a feasible schedule. The DTSS algorithm supports unicast, multicast and broadcast scheduling, simultaneously without any modification in the protocol. The protocol has been simulated using Castalia simulator to evaluate the run time performance. Simulation results show that our protocol is able to considerably reduce the time required to schedule.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Giant grained (42 mu m) translucent Ba5Li2Ti2Nb8O30 ceramic was fabricated by conventional sintering technique using the powders obtained via solid state reaction route. These samples were confirmed to possess tetragonal tungsten bronze structure (P4bm) at room temperature. The scanning electron microscopy established the average grain size to be close to 20 mu m. The photoluminescence studies carried out on these ceramics indicated sharp emission bands around 433 and 578 nm at an excitation wavelength of 350 nm which were attributed to band-edge emission as the band gap was 2.76 eV determined by Kubelka-Munk function. The dielectric properties of these ceramics were studied over wide frequency range (100-1 MHz) at room temperature. The decrease in dielectric constant with frequency could be explained on the basis of Koops theory. The dielectric constant and the loss were found to decrease with increasing frequency. The Curie temperature was confirmed to be similar to 370 A degrees C based on the dielectric anomaly observed when these measurements were carried out over a temperature range of 30-500 A degrees C. This shows a deviation from Curie-Weiss behaviour and hence an indicator of the occurrence of disordering in the system, the gamma = 1.23 which confirms the diffuse ferroelectric transition. These ceramics at room temperature exhibited P-E hysteresis loops, though not well saturated akin to that of their single crystalline counterparts. These are the suitable properties for ferroelectric random access memory applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In WSNs the communication traffic is often time and space correlated, where multiple nodes in a proximity start transmitting simultaneously. Such a situation is known as spatially correlated contention. The random access method to resolve such contention suffers from high collision rate, whereas the traditional distributed TDMA scheduling techniques primarily try to improve the network capacity by reducing the schedule length. Usually, the situation of spatially correlated contention persists only for a short duration, and therefore generating an optimal or suboptimal schedule is not very useful. Additionally, if an algorithm takes very long time to schedule, it will not only introduce additional delay in the data transfer but also consume more energy. In this paper, we present a distributed TDMA slot scheduling (DTSS) algorithm, which considerably reduces the time required to perform scheduling, while restricting the schedule length to the maximum degree of interference graph. The DTSS algorithm supports unicast, multicast, and broadcast scheduling, simultaneously without any modification in the protocol. We have analyzed the protocol for average case performance and also simulated it using Castalia simulator to evaluate its runtime performance. Both analytical and simulation results show that our protocol is able to considerably reduce the time required for scheduling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In wireless sensor networks (WSNs), contention occurs when two or more nodes in a proximity simultaneously try to access the channel. The contention causes collisions, which are very likely to occur when traffic is correlated. The excessive collision not only affects the reliability and the QoS of the application, but also the lifetime of the network. It is well-known that random access mechanisms do not efficiently handle correlated-contention, and therefore, suffer from high collision rate. Most of the existing TDMA scheduling techniques try to find an optimal or a sub-optimal schedule. Usually, the situation of correlated-contention persists only for a short duration, and therefore, it is not worthwhile to take a long time to generate an optimal or a sub-optimal schedule. We propose a randomized distributed TDMA scheduling (RD-TDMA) algorithm to quickly generate a feasible schedule (not necessarily optimal) to handle correlated-contention in WSNs. In RD-TDMA, a node in the network negotiates a slot with its neighbors using the message exchange mechanism. The proposed protocol has been simulated using the Castalia simulator to evaluate its runtime performance. Simulation results show that the RD-TDMA algorithm considerably reduces the time required to schedule.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flash memory is a leading storage media with excellent features such as random access and high storage density. However, it also faces significant reliability and endurance challenges. In flash memory, the charge level in the cells can be easily increased, but removing charge requires an expensive erasure operation. In this thesis we study rewriting schemes that enable the data stored in a set of cells to be rewritten by only increasing the charge level in the cells. We consider two types of modulation scheme; a convectional modulation based on the absolute levels of the cells, and a recently-proposed scheme based on the relative cell levels, called rank modulation. The contributions of this thesis to the study of rewriting schemes for rank modulation include the following: we

•propose a new method of rewriting in rank modulation, beyond the previously proposed method of “push-to-the-top”;

•study the limits of rewriting with the newly proposed method, and derive a tight upper bound of 1 bit per cell;

•extend the rank-modulation scheme to support rankings with repetitions, in order to improve the storage density;

•derive a tight upper bound of 2 bits per cell for rewriting in rank modulation with repetitions;

•construct an efficient rewriting scheme that asymptotically approaches the upper bound of 2 bit per cell.

The next part of this thesis studies rewriting schemes for a conventional absolute-levels modulation. The considered model is called “write-once memory” (WOM). We focus on WOM schemes that achieve the capacity of the model. In recent years several capacity-achieving WOM schemes were proposed, based on polar codes and randomness extractors. The contributions of this thesis to the study of WOM scheme include the following: we

•propose a new capacity-achievingWOM scheme based on sparse-graph codes, and show its attractive properties for practical implementation;

•improve the design of polarWOMschemes to remove the reliance on shared randomness and include an error-correction capability.

The last part of the thesis studies the local rank-modulation (LRM) scheme, in which a sliding window going over a sequence of real-valued variables induces a sequence of permutations. The LRM scheme is used to simulate a single conventional multi-level flash cell. The simulated cell is realized by a Gray code traversing all the relative-value states where, physically, the transition between two adjacent states in the Gray code is achieved by using a single “push-to-the-top” operation. The main results of the last part of the thesis are two constructions of Gray codes with asymptotically-optimal rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Circuit quantum electrodynamics, consisting of superconducting artificial atoms coupled to on-chip resonators, represents a prime candidate to implement the scalable quantum computing architecture because of the presence of good tunability and controllability. Furthermore, recent advances have pushed the technology towards the ultrastrong coupling regime of light-matter interaction, where the qubit-resonator coupling strength reaches a considerable fraction of the resonator frequency. Here, we propose a qubit-resonator system operating in that regime, as a quantum memory device and study the storage and retrieval of quantum information in and from the Z(2) parity-protected quantum memory, within experimentally feasible schemes. We are also convinced that our proposal might pave a way to realize a scalable quantum random-access memory due to its fast storage and readout performances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Nanoelectromechanical (NEM) device developed for dynamic random access memory (DRAM) is reported. A vertical nanotube structure is employed to form the electromechanical switch and capacitor structure. The mechanical movement of the nanotube defines 'On' and 'OFF' states and the electrical signals which result lead to charge storage in a vertical capacitor structure as in a traditional DRAM. The vertical structure contributes greatly to a decrease in cell dimension. The main concept of the NEM switch and capacitor can be applied to other memory devices as well. © 2005 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10(6) A cm(-2)). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10(4) A cm(-2) at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a novel implementation of the static random access memory (SRAM), the tunneling SRAM (TSRAM) uses the negative differential resistance of tunnel diodes (TD’s) and potentially offers considerable improvements in both standby power dissipation and integration density compared to the conventional CMOS SRAM. TSRAM has not yet been realized with a useful bit capacity mainly because the level of uniformity required of the nanoscale TD’s has been demanding and difficult to achieve. In this letter, we propose a Monte Carlo approach for estimating the yield of TSRAM cells and show that by optimizing the cell’s external circuit parameters, we can relax the allowable tolerance of a key device parameter of a resonant-TD-(RTD) based cell by three times.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1 × 10 6 A cm -2). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ∼1 × 10 4A cm -2 at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Significant improvements in the spatial and temporal uniformities of device switching parameters are successfully demonstrated in Ge/TaOx bilayer-based resistive switching devices, as compared with non-Ge devices. In addition, the reported Ge/TaOx devices also show significant reductions in the operation voltages. Influence of the Ge layer on the resistive switching of TaOx-based resistive random access memory is investigated by X-ray spectroscopy and the theory of Gibbs free energy. Higher uniformity is attributed to the confinement of the filamentary switching process. The presence of a larger number of interface traps, which will create a beneficial electric field to facilitate the drift of oxygen vacancies, is believed to be responsible for the lower operation voltages in the Ge/TaO x devices. © 1980-2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We experimentally demonstrate for the first time a nanoscale resistive random access memory (RRAM) electronic device integrated with a plasmonic waveguide providing the functionality of optical readout. The device fabrication is based on silicon on insulator CMOS compatible approach of local oxidation of silicon, which enables the realization of RRAM and low optical loss channel photonic waveguide at the same fabrication step. This plasmonic device operates at telecom wavelength of 1.55 μm and can be used to optically read the logic state of a memory by measuring two distinct levels of optical transmission. The experimental characterization of the device shows optical bistable behavior between these levels of transmission in addition to well-defined hysteresis. We attribute the changes in the optical transmission to the creation of a nanoscale absorbing and scattering metallic filament in the amorphous silicon layer, where the plasmonic mode resides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure, formation energy, and energy levels of the various oxygen vacancies in Ta2O5 have been calculated using the λ phase model. The intra-layer vacancies give rise to unusual, long-range bonding rearrangements, which are different for each defect charge state. The 2-fold coordinated intra-layer vacancy is the lowest cost vacancy and forms a deep level 1.5 eV below the conduction band edge. The 3-fold intra-layer vacancy and the 2-fold inter-layer vacancy are higher cost defects, and form shallower levels. The unusual bonding rearrangements lead to low oxygen migration barriers, which are useful for resistive random access memory applications. © 2014 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growth of Bi2Ti2O7 films with (111) orientation on Si(100) substrate by atmospheric pressure metal-organic chemical vapor deposition(APMOCVD) technique at 480similar to550 degreesC is presented. The films were characterized by X-ray diffraction analysis, atomic force microscopy and electron diffraction. The results show high quality Bi2Ti2O7 films with smooth shinning surface. The dielectric properties and C-V characterization of the films were studied. The dielectric constant (epsilon) and loss tangent (tgdelta) were found to be 180 and 0.01 respectively. The charge storage density was 31.9fC/mum(2). The resistivity is higher than 1x10(12) Omega. .cm under the applied voltage of 5V. The Bi2Ti2O7 films are suitable to be used as a new insulating gate material in dynamic random access memory (DRAM).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growth of Bi2Ti2O7 films with (111) orientation on Si(100) substrate by atmospheric pressure metal-organic chemical vapor deposition(APMOCVD) technique at 480similar to550 degreesC is presented. The films were characterized by X-ray diffraction analysis, atomic force microscopy and electron diffraction. The results show high quality Bi2Ti2O7 films with smooth shinning surface. The dielectric properties and C-V characterization of the films were studied. The dielectric constant (epsilon) and loss tangent (tgdelta) were found to be 180 and 0.01 respectively. The charge storage density was 31.9fC/mum(2). The resistivity is higher than 1x10(12) Omega. .cm under the applied voltage of 5V. The Bi2Ti2O7 films are suitable to be used as a new insulating gate material in dynamic random access memory (DRAM).