955 resultados para Rain gauges
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This research sought to understand the temporal and spatial distribution of rainfall and its effect on water dynamics on a regional basis, taking into account the pace of climate paradigm. The study area covers the entire river basin of the Itajai and its surroundings understood, roughly, between parallels 26° and 28° south latitude and 48° and 50° 30' west longitude, place of constant heavy rains and floods. In this region, pluviometric and fluviometric data were obtained, the variables of rainfall and water flow, which were compiled and analyzed using spreadsheets in order to get the series with more homogeneous data as possible for good analysis, the period between 1953 and 1982. This historical period has passed in principle by an analysis which sought to highlight the variability and distribution of rainfall and water flow in the basin-level annual, techniques which were used that allowed the choice of standard year representative (rainy, dry , usual) series. These obtained years (1957, 1968 and 1971, respectively) underwent a detailed analysis on the monthly level, providing good interpretation of the dynamic behavior of rain associated with dynamic water flow for these representative years
Resumo:
This monograph aims to contribute to the understanding and analysis of extreme events and its correlation with anthropogenic actions, in order to understand the levels of human interference in the environment and to identify potential social and environmental damage that such events may result in Ubatuba, located on the northern coast of São Paulo state. Therefore, two strategies were established, on one hand, episodic analysis of extreme weather events, and on the other, the analysis of the impact of atmospheric phenomena in everyday society. In this case we gave greater emphasis to analysis years that had higher total rainfall. In this sense, the research was based on the standard deviation technique and percentages, which supported to characterize the exceptional rainy years, in addition, use of rhythm analysis technique that has helped to identify the active atmospheric systems. From a qualitative point of view, field works were carried out in order to make use of news by the local press and civil defense for years considered extreme (positive standard deviation). From this, it was analyzed how the extreme episodes of rainfall trigger repercussions in geographic space. Also the spatial distribution of rainfall were carried out by means of quantitative analysis of six rain gauges. It was found that the highest occurrences of impacts, are located in the central areas of the city, as well as the highest rainfall totals. In fact, Ubatuba/SP suffers from very high rainfall totals and has a singularity on the climate...
Resumo:
Pós-graduação em Ciências Ambientais - Sorocaba
Resumo:
Spatial prediction of hourly rainfall via radar calibration is addressed. The change of support problem (COSP), arising when the spatial supports of different data sources do not coincide, is faced in a non-Gaussian setting; in fact, hourly rainfall in Emilia-Romagna region, in Italy, is characterized by abundance of zero values and right-skeweness of the distribution of positive amounts. Rain gauge direct measurements on sparsely distributed locations and hourly cumulated radar grids are provided by the ARPA-SIMC Emilia-Romagna. We propose a three-stage Bayesian hierarchical model for radar calibration, exploiting rain gauges as reference measure. Rain probability and amounts are modeled via linear relationships with radar in the log scale; spatial correlated Gaussian effects capture the residual information. We employ a probit link for rainfall probability and Gamma distribution for rainfall positive amounts; the two steps are joined via a two-part semicontinuous model. Three model specifications differently addressing COSP are presented; in particular, a stochastic weighting of all radar pixels, driven by a latent Gaussian process defined on the grid, is employed. Estimation is performed via MCMC procedures implemented in C, linked to R software. Communication and evaluation of probabilistic, point and interval predictions is investigated. A non-randomized PIT histogram is proposed for correctly assessing calibration and coverage of two-part semicontinuous models. Predictions obtained with the different model specifications are evaluated via graphical tools (Reliability Plot, Sharpness Histogram, PIT Histogram, Brier Score Plot and Quantile Decomposition Plot), proper scoring rules (Brier Score, Continuous Rank Probability Score) and consistent scoring functions (Root Mean Square Error and Mean Absolute Error addressing the predictive mean and median, respectively). Calibration is reached and the inclusion of neighbouring information slightly improves predictions. All specifications outperform a benchmark model with incorrelated effects, confirming the relevance of spatial correlation for modeling rainfall probability and accumulation.
Resumo:
A quality-controlled snow and meteorological dataset spanning the period 1 August 1993-31 July 2011 is presented, originating from the experimental station Col de Porte (1325 m altitude, Chartreuse range, France). Emphasis is placed on meteorological data relevant to the observation and modelling of the seasonal snowpack. In-situ driving data, at the hourly resolution, consist of measurements of air temperature, relative humidity, windspeed, incoming short-wave and long-wave radiation, precipitation rate partitioned between snow- and rainfall, with a focus on the snow-dominated season. Meteorological data for the three summer months (generally from 10 June to 20 September), when the continuity of the field record is not warranted, are taken from a local meteorological reanalysis (SAFRAN), in order to provide a continuous and consistent gap-free record. Data relevant to snowpack properties are provided at the daily (snow depth, snow water equivalent, runoff and albedo) and hourly (snow depth, albedo, runoff, surface temperature, soil temperature) time resolution. Internal snowpack information is provided from weekly manual snowpit observations (mostly consisting in penetration resistance, snow type, snow temperature and density profiles) and from a hourly record of temperature and height of vertically free ''settling'' disks. This dataset has been partially used in the past to assist in developing snowpack models and is presented here comprehensively for the purpose of multi-year model performance assessment. The data is placed on the PANGAEA repository (doi:10.1594/PANGAEA.774249) as well as on the public ftp server ftp://ftp-cnrm.meteo.fr/pub-cencdp/.
Resumo:
The satellite derived HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data) and ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis data sets have been validated against in-situ precipitation measurements from ship rain gauges and optical disdrometers over the open-ocean by applying a statistical analysis for binary forecasts. For this purpose collocated pairs of data were merged within a certain temporal and spatial threshold into single events, according to the satellites' overpass, the observation and the forecast times. HOAPS detects the frequency of precipitation well, while ERA-Interim strongly overestimates it, especially in the tropics and subtropics. Although precipitation rates are difficult to compare because along-track point measurements are collocated with areal estimates and the numbers of available data are limited, we find that HOAPS underestimates precipitation rates, while ERA-Interim's Atlantic-wide average precipitation rate is close to measurements. However, regionally averaged over latitudinal belts, there are deviations between the observed mean precipitation rates and ERA-Interim. The most obvious ERA-Interim feature is an overestimation of precipitation in the area of the intertropical convergence zone and the southern sub-tropics over the Atlantic Ocean. For a limited number of snow measurements by optical disdrometers it can be concluded that both HOAPS and ERA-Interim are suitable to detect the occurrence of solid precipitation.
Resumo:
El objetivo central de la presente investigación es profundizar la interpretación de los parámetros multifractales en el caso de las series de precipitación. Para ello se aborda, en primer lugar, la objetivación de la selección de la parte lineal de las curvas log-log que se encuentra en la base de los métodos de análisis fractal y multifractal; y, en segundo lugar, la generación de series artificiales de precipitación, con características similares a las reales, que permitan manipular los datos y evaluar la influencia de las modificaciones controladas de las series en los resultados de los parámetros multifractales derivados. En cuanto al problema de la selección de la parte lineal de las curvas log-log se desarrollaron dos métodos: a. Cambio de tendencia, que consiste en analizar el cambio de pendiente de las rectas ajustadas a dos subconjuntos consecutivos de los datos. b. Eliminación de casos, que analiza la mejora en el p-valor asociado al coeficiente de correlación al eliminar secuencialmente los puntos finales de la regresión. Los resultados obtenidos respecto a la regresión lineal establecen las siguientes conclusiones: - La metodología estadística de la regresión muestra la dificultad para encontrar el valor de la pendiente de tramos rectos de curvas en el procedimiento base del análisis fractal, indicando que la toma de decisión de los puntos a considerar redunda en diferencias significativas de las pendientes encontradas. - La utilización conjunta de los dos métodos propuestos ayuda a objetivar la toma de decisión sobre la parte lineal de las familias de curvas en el análisis fractal, pero su utilidad sigue dependiendo del número de datos de que se dispone y de las altas significaciones que se obtienen. En cuanto al significado empírico de los parámetros multifratales de la precipitación, se han generado 19 series de precipitación por medio de un simulador de datos diarios en cascada a partir de estimaciones anuales y mensuales, y en base a estadísticos reales de 4 estaciones meteorológicas españolas localizadas en un gradiente de NW a SE. Para todas las series generadas, se calculan los parámetros multifractales siguiendo la técnica de estimación de la DTM (Double Trace Moments - Momentos de Doble Traza) desarrollado por Lavalle et al. (1993) y se observan las modificaciones producidas. Los resultados obtenidos arrojaron las siguientes conclusiones: - La intermitencia, C1, aumenta al concentrar las precipitaciones en menos días, al hacerla más variable, o al incrementar su concentración en los días de máxima, mientras no se ve afectado por la modificación en la variabilidad del número de días de lluvia. - La multifractalidad, α, se ve incrementada con el número de días de lluvia y la variabilidad de la precipitación, tanto anual como mensual, así como también con la concentración de precipitación en el día de máxima. - La singularidad probable máxima, γs, se ve incrementada con la concentración de la lluvia en el día de precipitación máxima mensual y la variabilidad a nivel anual y mensual. - El grado no- conservativo, H, depende del número de los días de lluvia que aparezcan en la serie y secundariamente de la variabilidad general de la lluvia. - El índice de Hurst generalizado se halla muy ligado a la singularidad probable máxima. ABSTRACT The main objective of this research is to interpret the multifractal parameters in the case of precipitation series from an empirical approach. In order to do so the first proposed task was to objectify the selection of the linear part of the log-log curves that is a fundamental step of the fractal and multifractal analysis methods. A second task was to generate precipitation series, with real like features, which allow evaluating the influence of controlled series modifications on the values of the multifractal parameters estimated. Two methods are developed for selecting the linear part of the log-log curves in the fractal and multifractal analysis: A) Tendency change, which means analyzing the change in slope of the fitted lines to two consecutive subsets of data. B) Point elimination, which analyzes the improvement in the p- value associated to the coefficient of correlation when the final regression points are sequentially eliminated. The results indicate the following conclusions: - Statistical methodology of the regression shows the difficulty of finding the slope value of straight sections of curves in the base procedure of the fractal analysis, pointing that the decision on the points to be considered yield significant differences in slopes values. - The simultaneous use of the two proposed methods helps to objectify the decision about the lineal part of a family of curves in fractal analysis, but its usefulness are still depending on the number of data and the statistical significances obtained. Respect to the empiric meaning of the precipitation multifractal parameters, nineteen precipitation series were generated with a daily precipitation simulator derived from year and month estimations and considering statistics from actual data of four Spanish rain gauges located in a gradient from NW to SE. For all generated series the multifractal parameters were estimated following the technique DTM (Double Trace Moments) developed by Lavalle et al. (1993) and the variations produced considered. The results show the following conclusions: 1. The intermittency, C1, increases when precipitation is concentrating for fewer days, making it more variable, or when increasing its concentration on maximum monthly precipitation days, while it is not affected due to the modification in the variability in the number of days it rained. 2. Multifractility, α, increases with the number of rainy days and the variability of the precipitation, yearly as well as monthly, as well as with the concentration of precipitation on the maximum monthly precipitation day. 3. The maximum probable singularity, γs, increases with the concentration of rain on the day of the maximum monthly precipitation and the variability in yearly and monthly level. 4. The non-conservative degree, H’, depends on the number of rainy days that appear on the series and secondly on the general variability of the rain. 5. The general Hurst index is linked to the maximum probable singularity.
Resumo:
"Final Report to U.S. Army Corps of Engineers, Chicago District."
Resumo:
Satellite information, in combination with conventional point source measurements, can be a valuable source of information. This thesis is devoted to the spatial estimation of areal rainfall over a region using both the measurements from a dense and sparse network of rain-gauges and images from the meteorological satellites. A primary concern is to study the effects of such satellite assisted rainfall estimates on the performance of rainfall-runoff models. Low-cost image processing systems and peripherals are used to process and manipulate the data. Both secondary as well as primary satellite images were used for analysis. The secondary data was obtained from the in-house satellite receiver and the primary data was obtained from an outside source. Ground truth data was obtained from the local Water Authority. A number of algorithms are presented that combine the satellite and conventional data sources to produce areal rainfall estimates and the results are compared with some of the more traditional methodologies. The results indicate that the satellite cloud information is valuable in the assessment of the spatial distribution of areal rainfall, for both half-hourly as well as daily estimates of rainfall. It is also demonstrated how the performance of the simple multiple regression rainfall-runoff model is improved when satellite cloud information is used as a separate input in addition to rainfall estimates from conventional means. The use of low-cost equipment, from image processing systems to satellite imagery, makes it possible for developing countries to introduce such systems in areas where the benefits are greatest.
Resumo:
The need for continuous recording rain gauges makes it difficult to determine the rainfall erosivity factor (R-factor) of the (R)USLE model in areas without good temporal data coverage. In mainland Spain, the Nature Conservation Institute (ICONA) determined the R-factor at few selected pluviographs, so simple estimates of the R-factor are definitely of great interest. The objectives of this study were: (1) to identify a readily available estimate of the R-factor for mainland Spain; (2) to discuss the applicability of a single (global) estimate based on analysis of regional results; (3) to evaluate the effect of record length on estimate precision and accuracy; and (4) to validate an available regression model developed by ICONA. Four estimators based on monthly precipitation were computed at 74 rainfall stations throughout mainland Spain. The regression analysis conducted at a global level clearly showed that modified Fournier index (MFI) ranked first among all assessed indexes. Applicability of this preliminary global model across mainland Spain was evaluated by analyzing regression results obtained at a regional level. It was found that three contiguous regions of eastern Spain (Catalonia, Valencian Community and Murcia) could have a different rainfall erosivity pattern, so a new regression analysis was conducted by dividing mainland Spain into two areas: Eastern Spain and plateau-lowland area. A comparative analysis concluded that the bi-areal regression model based on MFI for a 10-year record length provided a simple, precise and accurate estimate of the R-factor in mainland Spain. Finally, validation of the regression model proposed by ICONA showed that R-ICONA index overpredicted the R-factor by approximately 19%.
Resumo:
The need for high temporal and spatial resolution precipitation data for hydrological analyses has been discussed in several studies. Although rain gauges provide valuable information, a very dense rain gauge network is costly. As a result, several new ideas have been emerged to help estimating areal rainfall with higher temporal and spatial resolution. Rabiei et al. (2013) observed that moving cars, called RainCars (RCs), can potentially be a new source of data for measuring rainfall amounts. The optical sensors used in that study are designed for operating the windscreen wipers and showed promising results for rainfall measurement purposes. Their measurement accuracy has been quantified in laboratory experiments. Considering explicitly those errors, the main objective of this study is to investigate the benefit of using RCs for estimating areal rainfall. For that, computer experiments are carried out, where radar rainfall is considered as the reference and the other sources of data, i.e. RCs and rain gauges, are extracted from radar data. Comparing the quality of areal rainfall estimation by RCs with rain gauges and reference data helps to investigate the benefit of the RCs. The value of this additional source of data is not only assessed for areal rainfall estimation performance, but also for use in hydrological modeling. The results show that the RCs considering measurement errors derived from laboratory experiments provide useful additional information for areal rainfall estimation as well as for hydrological modeling. Even assuming higher uncertainties for RCs as obtained from the laboratory up to a certain level is observed practical.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Humanas, Departamento de Geografia, 2015.
Resumo:
In Colombia coffee production is facing risks due to an increase in the variability and amount of rainfall, which may alter hydrological cycles and negatively influence yield quality and quantity. Shade trees in coffee plantations, however, are known to produce ecological benefits, such as intercepting rainfall and lowering its velocity, resulting in a reduced net-rainfall and higher water infiltration. In this case study, we measured throughfall and soil hydrological properties in four land use systems in Cauca, Colombia, that differed in stand structural parameters: shaded coffee, unshaded coffee, secondary forest and pasture. We found that throughfall was rather influenced by stand structural characteristics than by rainfall intensity. Lower throughfall was recorded in the shaded coffee compared to the other systems when rain gauges were placed at a distance of 1.0 m to the shade tree. The variability of throughfall was high in the shaded coffee, which was due to different canopy characteristics and irregular arrangements of shade tree species. Shaded coffee and secondary forest resembled each other in soil structural parameters, with an increase in saturated hydraulic conductivity and microporosity, whereas bulk density and macroporosity decreased, compared to the unshaded coffee and pasture. In this context tree-covered systems indicate a stronger resilience towards changing rainfall patterns, especially in mountainous areas where coffee is cultivated.