829 resultados para Radio-frequency energy harvesting
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Linear resonant harvesters have been the most common type of generators used to scavenge energy from mechanical vibrations. When subject to harmonic excitation, good performance is achieved once the device is tuned so that its natural frequency coincides with the excitation frequency. In such a situation, the average power harvested in a cycle is proportional to the cube of the excitation frequency and inversely proportional to the suspension damping, which is sought to be very low. However, a very low damping involves a relatively long transient in the system response, where the classical formulation adopted for steady-state regimes do not hold. This paper presents an investigation into the design of a linear resonant harvester to scavenge energy from time-limited harmonic excitations involving a transient response, which could be more likely in some practical situations. An application is presented considering train-induced vibrations.
Resumo:
The use of piezoelectric materials for the development of electromechanical devices for the harvesting or scavenging of ambient vibrations has been extensively studied over the last decade. The energy conversion from mechanical (vibratory) to electrical energy is provided by the electromechanical coupling between mechanical strains/stresses and electric charges/voltages in the piezoelectric material. The majority of the studies found in the open literature present a tip-mass cantilever piezoelectric device tuned on the operating frequency. Although recent results show that these devices can be quite effective for harvesting small amounts of electrical energy, little has been published on the robustness of these devices or on the effect of parametric uncertainties on the energy harvested. This work focuses on a cantilever plate with bonded piezoelectric patches and a tip-mass serving as an energy harvesting device. The rectifier and storage electric circuit was replaced by a resistive circuit (R). In addition, an alternative to improve the harvesting performance by adding an inductance in series to the harvesting circuit, thus leading to a resonant circuit (RL), is considered. A coupled finite element model leading to mechanical (displacements) and electrical (charges at electrodes) degrees of freedom is considered. An analysis of the effect of parametric uncertainties of the device on the electric output is performed. Piezoelectric and dielectric constants of the piezoelectric active layers and electric circuit equivalent inductance are considered as stochastic parameters. Mean and confidence intervals of the electric output are evaluated.
Resumo:
Autonomous system applications are typically limited by the power supply operational lifetime when battery replacement is difficult or costly. A trade-off between battery size and battery life is usually calculated to determine the device capability and lifespan. As a result, energy harvesting research has gained importance as society searches for alternative energy sources for power generation. For instance, energy harvesting has been a proven alternative for powering solar-based calculators and self-winding wristwatches. Thus, the use of energy harvesting technology can make it possible to assist or replace batteries for portable, wearable, or surgically-implantable autonomous systems. Applications such as cardiac pacemakers or electrical stimulation applications can benefit from this approach since the number of surgeries for battery replacement can be reduced or eliminated. Research on energy scavenging from body motion has been investigated to evaluate the feasibility of powering wearable or implantable systems. Energy from walking has been previously extracted using generators placed on shoes, backpacks, and knee braces while producing power levels ranging from milliwatts to watts. The research presented in this paper examines the available power from walking and running at several body locations. The ankle, knee, hip, chest, wrist, elbow, upper arm, side of the head, and back of the head were the chosen target localizations. Joints were preferred since they experience the most drastic acceleration changes. For this, a motor-driven treadmill test was performed on 11 healthy individuals at several walking (1-4 mph) and running (2-5 mph) speeds. The treadmill test provided the acceleration magnitudes from the listed body locations. Power can be estimated from the treadmill evaluation since it is proportional to the acceleration and frequency of occurrence. Available power output from walking was determined to be greater than 1mW/cm³ for most body locations while being over 10mW/cm³ at the foot and ankle locations. Available power from running was found to be almost 10 times higher than that from walking. Most energy harvester topologies use linear generator approaches that are well suited to fixed-frequency vibrations with sub-millimeter amplitude oscillations. In contrast, body motion is characterized with a wide frequency spectrum and larger amplitudes. A generator prototype based on self-winding wristwatches is deemed to be appropriate for harvesting body motion since it is not limited to operate at fixed-frequencies or restricted displacements. Electromagnetic generation is typically favored because of its slightly higher power output per unit volume. Then, a nonharmonic oscillating rotational energy scavenger prototype is proposed to harness body motion. The electromagnetic generator follows the approach from small wind turbine designs that overcome the lack of a gearbox by using a larger number of coil and magnets arrangements. The device presented here is composed of a rotor with multiple-pole permanent magnets having an eccentric weight and a stator composed of stacked planar coils. The rotor oscillations induce a voltage on the planar coil due to the eccentric mass unbalance produced by body motion. A meso-scale prototype device was then built and evaluated for energy generation. The meso-scale casing and rotor were constructed on PMMA with the help of a CNC mill machine. Commercially available discrete magnets were encased in a 25mm rotor. Commercial copper-coated polyimide film was employed to manufacture the planar coils using MEMS fabrication processes. Jewel bearings were used to finalize the arrangement. The prototypes were also tested at the listed body locations. A meso-scale generator with a 2-layer coil was capable to extract up to 234 µW of power at the ankle while walking at 3mph with a 2cm³ prototype for a power density of 117 µW/cm³. This dissertation presents the analysis of available power from walking and running at different speeds and the development of an unobtrusive miniature energy harvesting generator for body motion. Power generation indicates the possibility of powering devices by extracting energy from body motion.
Resumo:
The following thesis describes the computer modelling of radio frequency capacitively coupled methane/hydrogen plasmas and the consequences for the reactive ion etching of (100) GaAs surfaces. In addition a range of etching experiments was undertaken over a matrix of pressure, power and methane concentration. The resulting surfaces were investigated using X-ray photoelectron spectroscopy and the results were discussed in terms of physical and chemical models of particle/surface interactions in addition to the predictions for energies, angles and relative fluxes to the substrate of the various plasma species. The model consisted of a Monte Carlo code which followed electrons and ions through the plasma and sheath potentials whilst taking account of collisions with background neutral gas molecules. The ionisation profile output from the electron module was used as input for the ionic module. Momentum scattering interactions of ions with gas molecules were investigated via different models and compared against results given by quantum mechanical code. The interactions were treated as central potential scattering events and the resulting neutral cascades were followed. The resulting predictions for ion energies at the cathode compared well to experimental ion energy distributions and this verified the particular form of the electrical potentials used and their applicability in the particular geometry plasma cell used in the etching experiments. The final code was used to investigate the effect of external plasma parameters on the mass distribution, energy and angles of all species impingent on the electrodes. Comparisons of electron energies in the plasma also agreed favourably with measurements made using a Langmuir electric probe. The surface analysis showed the surfaces all to be depleted in arsenic due to its preferential removal and the resultant Ga:As ratio in the surface was found to be directly linked to the etch rate. The etch rate was determined by the methane flux which was predicted by the code.
Resumo:
Con la presente tesi viene esaminato un metodo per modificare la frequenza di risonanza di trasduttori piezoelettrici mediante applicazione di carichi elettrici esterni. L'elaborato inizia con la presentazione dei cristalli utilizzati nel lavoro di tesi, concentrandosi sul processo di fabbricazione di un bimorph cantilever impiegato come convertitore elettromeccanico di energia, la cui frequenza di risonanza è modellizzata analiticamente mediante la legge di Newton e il modello di Euler-Bernoulli. Su tale struttura vengono condotte misure mediante shaker elettrodinamico e analizzatore d'impedenza, ai fini di giusticare il modello analitico presentato. Con lo scopo di sincronizzare la frequenza di risonanza del cantilever con la vibrazione dell'ambiente per massimizzare la potenza disponibile, viene proposto un algoritmo MPPT secondo l'approccio Perturba e Osserva (P&O), al quale è fornita in ingresso la tensione efficace di un layer di materiale piezoelettrico. Valutare la sua risposta in tensione, presenta dei limiti applicativi che hanno portato a prendere in considerazione un approccio totalmente diff�erente, basato sullo sfasamento tra la tensione di un trasduttore piezoelettrico e il segnale di accelerazione impiegato come eccitazione. Misure sperimentali sono state condotte con l'obiettivo di validare l'efficacia di quest'ultimo approccio qualora si voglia sincronizzare la frequenza di risonanza dei piezo con segnali di vibrazione reali.
Resumo:
We consider a three-node decode-and-forward (DF) half-duplex relaying system, where the source first harvests RF energy from the relay, and then uses this energy to transmit information to the destination via the relay. We assume that the information transfer and wireless power transfer phases alternate over time in the same frequency band, and their time fraction (TF) may change or be fixed from one transmission epoch (fading state) to the next. For this system, we maximize the achievable average data rate. Thereby, we propose two schemes: (1) jointly optimal power and TF allocation, and (2) optimal power allocation with fixed TF. Due to the small amounts of harvested power at the source, the two schemes achieve similar information rates, but yield significant performance gains compared to a benchmark system with fixed power and fixed TF allocation.
Resumo:
Solar cooling systems are gaining popularity due to continuously increasing of energy costs around the world. However, there are still some factors that are hindering the installation of solar cooling systems on a larger scale. One being the cost associated with the solar collectors required to provide heat to the absorption chiller. This study demonstrates the possibility of reducing the number of solar panels in a residential solar cooling system based on evacuated tubes producing hot water at a low temperature (90 °C) and a water-ammonia absorption chiller.
Resumo:
Radial and axial distributions of magnetic fields in a low-frequency (∼460 kHz)inductively coupled plasmasource with two internal crossed planar rf current sheets are reported. The internal antenna configuration comprises two orthogonal sets of eight alternately reconnected parallel and equidistant copper litz wires in quartz enclosures and generates three magnetic (H z, H r, and H φ) and two electric (E φ and E r) field components at the fundamental frequency. The measurements have been performed in rarefied and dense plasmas generated in the electrostatic(E) and electromagnetic (H)discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral (“pancake”) antennas. Relatively deeper rf power deposition in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental data.
Resumo:
Piezoelectric energy harvesters can be used to convert ambient energy into electrical energy and power small autonomous devices. In recent years, massive effort has been made to improve the energy harvesting ability in piezoelectric materials. In this study, reduced graphene oxide was added into poly(vinylidene fluoride) to fabricate the piezoelectric nanocomposite films. Open-circuit voltage and electrical power harvesting experiments showed remarkable enhancement in the piezoelectricity of the fabricated poly(vinylidene fluoride)/reduced graphene oxide nanocomposite, especially at an optimal reduced graphene oxide content of 0.05 wt%. Compared to pristine poly(vinylidene fluoride) films, the open-circuit voltage, the density of harvested power of alternating current, and direct current of the poly(vinylidene fluoride)/reduced graphene oxide nanocomposite films increased by 105%, 153%, and 233%, respectively, indicating a great potential for a broad range of applications.
Resumo:
We study sensor networks with energy harvesting nodes. The generated energy at a node can be stored in a buffer. A sensor node periodically senses a random field and generates a packet. These packets are stored in a queue and transmitted using the energy available at that time at the node. For such networks we develop efficient energy management policies. First, for a single node, we obtain policies that are throughput optimal, i.e., the data queue stays stable for the largest possible data rate. Next we obtain energy management policies which minimize the mean delay in the queue. We also compare performance of several easily implementable suboptimal policies. A greedy policy is identified which, in low SNR regime, is throughput optimal and also minimizes mean delay. Next using the results for a single node, we develop efficient MAC policies.
Resumo:
Low pressure radio frequency plasma-assisted deposition of 1-isopropyl-4-methyl-1,4-cyclohexadiene thin films was investigated for different polymerization conditions. Transparent, environmentally stable and flexible, these organic films are promising candidates for organic photovoltaics (OPV) and flexible electronics applications, where they can be used as encapsulating coatings and insulating interlayers. The effect of deposition RF power on optical properties of the films was limited, with all films being optically transparent, with refractive indices in a range of 1.57–1.58 at 500 nm. The optical band gap (Eg) of ~3 eV fell into the insulating Eg region, decreasing for films fabricated at higher RF power. Independent of deposition conditions, the surfaces were smooth and defect-free, with uniformly distributed morphological features and average roughness between 0.30 nm (at 10 W) and 0.21 nm (at 75 W). Films fabricated at higher deposition power displayed enhanced resistance to delamination and wear, and improved hardness, from 0.40 GPa for 10 W to 0.58 GPa for 75 W at a load of 700 μN. From an application perspective, it is therefore possible to tune the mechanical and morphological properties of these films without compromising their optical transparency or insulating property.
Resumo:
A general expression for the Mössbauer lineshape in the presence of a radio frequency field is derived. As an example the effect of the rf field on Fe57 nuclei is discussed for a situation where the 3/2 sublevel of 14.4 keV state of Fe57 is selectively populated. At resonance, both the diagonal and non-diagonal matrix elements contribute to the correlation function. As a result, in addition to a slight rf induced distortion of the main Mössbauer line. additional transition lines are obtained. Thus the present calculation supports the experimental observations of Heiman et al.
Resumo:
A linear excitation of electromagnetic modes at frequencies (n + ı89 in a plasma through which two electron beams are contra-streaming along the magnetic field is investigated. This may be a source of the observed {cote emissions at auroral latitudes.
Resumo:
In this paper we employ the phenomenon of bending deformation induced transport of cations via the polymer chains in the thickness direction of an electro-active polymer (EAP)-metal composite thin film for mechanical energy harvesting. While EAPs have been applied in the past in actuators and artificial muscles, promising applications of such materials in hydrodynamic and vibratory energy harvesting are reported in this paper. For this, functionalization of EAPs with metal electrodes is the key factor in improving the energy harvesting efficiency. Unlike Pt-based electrodes, Ag-based electrodes have been deposited on an EAP membrane made of Nafion. The developed ionic metal polymer composite (IPMC) membrane is subjected to a dynamic bending load, hydrodynamically, and evaluated for the voltage generated against an external electrical load. An increase of a few orders of magnitude has been observed in the harvested energy density and power density in air, deionized water and in electrolyte solutions with varying concentrations of sodium chloride (NaCl) as compared to Pt-based IPMC performances reported in the published literature. This will have potential applications in hydrodynamic and residual environmental energy harvesting to power sensors and actuators based on micro-andn nano-electro-mechanical systems (MEMS and NEMS) for biomedical,maerospace and oceanic applications.