996 resultados para Rack and pinion
Resumo:
Solid oral dosage form disintegration in the human stomach is a highly complex process dependent on physicochemical properties of the stomach contents as well as on physical variables such as hydrodynamics and mechanical stress. Understanding the role of hydrodynamics and forces in disintegration of oral solid dosage forms can help to improve in vitro disintegration testing and the predictive power of the in vitro test. The aim of this work was to obtain a deep understanding of the influence of changing hydrodynamic conditions on solid oral dosage form performance. Therefore, the hydrodynamic conditions and forces present in the compendial PhEur/USP disintegration test device were characterized using a computational fluid dynamics (CFD) approach. Furthermore, a modified device was developed and the hydrodynamic conditions present were simulated using CFD. This modified device was applied in two case studies comprising immediate release (IR) tablets and gastroretentive drug delivery systems (GRDDS). Due to the description of movement provided in the PhEur, the movement velocity of the basket-rack assembly follows a sinusoidal profile. Therefore, hydrodynamic conditions are changing continually throughout the movement cycle. CFD simulations revealed that the dosage form is exposed to a wide range of fluid velocities and shear forces during the test. The hydrodynamic conditions in the compendial device are highly variable and cannot be controlled. A new, modified disintegration test device based on computerized numerical control (CNC) technique was developed. The modified device can be moved in all three dimensions and radial movement is also possible. Simple and complex moving profiles can be developed and the influence of the hydrodynamic conditions on oral solid dosage form performance can be evaluated. Furthermore, a modified basket was designed that allows two-sided fluid flow. CFD simulations of the hydrodynamics and forces in the modified device revealed significant differences in the fluid flow field and forces when compared to the compendial device. Due to the CNC technique moving velocity and direction are arbitrary and hydrodynamics become controllable. The modified disintegration test device was utilized to examine the influence of moving velocity on disintegration times of IR tablets. Insights into the influence of moving speed, medium viscosity and basket design on disintegration times were obtained. An exponential relationship between moving velocity of the modified basket and disintegration times was established in simulated gastric fluid. The same relationship was found between the disintegration times and the CFD predicted average shear stress on the tablet surface. Furthermore, a GRDDS was developed based on the approach of an in situ polyelectrolyte complex (PEC). Different complexes composed of different grades of chitosan and carrageenan and different ratios of those were investigated for their swelling behavior, mechanical stability, and in vitro drug release. With an optimized formulation the influence of changing hydrodynamic conditions on the swelling behavior and the drug release profile was demonstrated using the modified disintegration test device. Both, swelling behavior and drug release, were largely dependent on the hydrodynamic conditions. Concluding, it has been shown within this thesis that the application of the modified disintegration test device allows for detailed insights into the influence of hydrodynamic conditions on solid oral dosage form disintegration and dissolution. By the application of appropriate test conditions, the predictive power of in vitro disintegration testing can be improved using the modified disintegration test device. Furthermore, CFD has proven a powerful tool to examine the hydrodynamics and forces in the compendial as well as in the modified disintegration test device. rn
Resumo:
Telescopic systems of structural members with clearance are found in many applications, e.g., mobile cranes, rack feeders, fork lifters, stacker cranes (see Figure 1). Operating these machines, undesirable vibrations may reduce the performance and increase safety problems. Therefore, this contribution has the aim to reduce these harmful vibrations. For a better understanding, the dynamic behaviour of these constructions is analysed. The main interest is the overlapping area of each two sections of the above described systems (see markings in Figure 1) which is investigated by measurements and by computations. A test rig is constructed to determine the dynamic behaviour by measuring fundamental vibrations and higher frequent oscillations, damping coefficients, special appearances and more. For an appropriate physical model, the governing boundary value problem is derived by applying Hamilton’s principle and a classical discretisation procedure is used to generate a coupled system of nonlinear ordinary differential equations as the corresponding truncated mathematical model. On the basis of this model, a controller concept for preventing harmful vibrations is developed.
Resumo:
In aviary systems for laying hens, it is important to provide suitable nest access platforms in front of the nests, allowing hens to reach and explore each of the nests easily. This access platform is needed to achieve good nest acceptance by the hens and thereby prevent mislaid eggs. In the present experiment, the behavior of hens using 2 different nest access platforms, a plastic grid and 2 wooden perches, was examined. Furthermore, the nests were placed on both sides of the aviary rack (corridor side and outdoor side), either integrated into the aviary rack itself (integrated nest; IN) or placed on the walls of the pens (wall nest; WN), resulting in a 2 × 2 factorial design Four thousand five hundred white laying hens were housed in 20 test pens. The eggs in the nests and mislaid eggs were collected daily, and the behavior of hens on the nest accesses was filmed during wk 25 and 26, using focal observation and scan sampling methods. More balancing, body contact, and agonistic interactions were expected for nests with perches, whereas more walking and nest inspections were expected for nests with grids. There were more mislaid eggs and balancing found in pens equipped with nests with wooden perches. More agonistic interactions and balancing, less standing, and a longer duration of nest inspection were found with the WN compared with the IN. Interactions between platform design and position of the nests were found for duration of nest visits, body contact, and walking, with the highest amount for WN equipped with plastic grids. Nests on the corridor side were favored by the hens. Nest-related behaviors, such as nest inspection, standing, and walking, decreased over time as did the number of hens on the nest accesses, whereas sitting increased. These results indicate that the hens had more difficulties in gripping the perches as designed. The lower number of hens on the nest access platforms in front of IN may be due to a better distribution around nests and tier changes within the aviary rack. Based on these results, grids rather than perches provide for improved nesting behavior.
Resumo:
The magnetic polarity stratigraphy at Site 907 obtained from the shipboard pass-through magnetometer and from discrete samples is readily interpretable back to the onset of the Gilbert Chron (5.89 Ma). From this level to the base of the section at ~14 Ma, the interpretation is corroborated by silicoflagellate datums with predictable correlation to polarity chrons. The resulting magnetostratigraphic interpretation differs from those proposed in the Leg 151 (Hole 907A) and 162 (Holes 907B and 907C) Initial Reports volumes. An important hiatus in the 7-10 Ma interval at Site 907 caused sedimentation to slow or cease for ~2.7 m.y. We have revised the shipboard correlation among the three holes at Site 907, resulting in a new composite section splice and recalculation of composite depths. For Site 985, magnetostratigraphic interpretation is possible down to ~150 meters below seafloor (mbsf) (C3An/C3Ar) at ~6 Ma. There are no useful biostratigraphic datums from Site 985 to support this interpretation; however, the interpretation is supported by the correlation of Sites 985 and 907 using natural gamma data from the shipboard multisensor track. Below ~150 mbsf at Site 985, drilling-related deformation at the onset of extended core barrel drilling precluded magnetostratigraphic interpretation.
Resumo:
Through scanning electron microscope analysis of sediment microfabric, we have evaluated variations in high-resolution shipboard physical properties (index properties and shear strength), sediment components (smear slide determinations), and shore-based calcium carbonate and biogenic silica data from Site 751 (Kerguelen Plateau). The stratigraphic section at this site records a change in biogenic ooze composition from predominantly calcareous (nannofossil) to siliceous (diatom) ooze from ~23 Ma to the present, reflecting expansion of Antarctic water masses during the late Neogene. The profound change in physical properties and sediment character at 40.1 mbsf (~5-6 Ma) evidently records the northward movement of the Polar Front and a change in absolute accumulation rates of sediment at this site. Trends in geotechnical properties with depth at Site 751 allowed us to subdivide the sedimentary column into a number of geotechnical units that reflect changes in depositional and postdepositional processes with time. Geotechnical properties are sensitive to changing sedimentary inputs of primarily siliceous and calcareous microfossils. This allows us to study the physical nature of biostratigraphically-identified hiatuses and variations in environmental conditions linked to the migration of the Polar Front across this region. The analysis of geotechnical properties permits a more detailed division of the sedimentary column than is possible from shipboard lithologic descriptions alone. Our study of the sedimentary microfabric indicates that randomly oriented, elongate pennate diatom valves compose the sediments with highest porosity and water content values, and the lowest density values (wet bulk, dry bulk, and grain density). Conversely, sediments composed of nannofossils and disassociated nannofossil crystallites and little or no siliceous remains have the lowest porosity and water content values, and the highest density values. Samples of mixed siliceous/calcareous composition have intermediate physical property values, but these vary according to the nature of the sedimentary matrix and the state of preservation of individual skeletal elements.
Resumo:
Knowledge of the evolution of atmospheric carbon dioxide concentrations throughout the Earth's history is important for a reconstruction of the links between climate and radiative forcing of the Earth's surface temperatures. Although atmospheric carbon dioxide concentrations in the early Cenozoic era (about 60 Myr ago) are widely believed to have been higher than at present, there is disagreement regarding the exact carbon dioxide levels, the timing of the decline and the mechanisms that are most important for the control of CO2 concentrations over geological timescales. Here we use the boron-isotope ratios of ancient planktonic foraminifer shells to estimate the pH of surface-layer sea water throughout the past 60 million years, which can be used to reconstruct atmospheric CO2 concentrations. We estimate CO2 concentrations of more than 2,000 p.p.m. for the late Palaeocene and earliest Eocene periods (from about 60 to 52 Myr ago), and find an erratic decline between 55 and 40 Myr ago that may have been caused by reduced CO2 outgassing from ocean ridges, volcanoes and metamorphic belts and increased carbon burial. Since the early Miocene (about 24 Myr ago), atmospheric CO2 concentrations appear to have remained below 500 p.p.m. and were more stable than before, although transient intervals of CO2 reduction may have occurred during periods of rapid cooling approximately 15 and 3 Myr ago.