941 resultados para RETINAL NERVE FIBER LAYER
Resumo:
Purtscher-like retinopathy is associated with retinal hemorrhages and ischaemia probably due to the complement-mediated leukoembolization. It is a rare and severe angiopathy found in conditions such as acute pancreatitis. Case. We present a case of a 53-year-old man who presented with a Purtscher-like retinopathy associated with the development of acute pancreatitis in the context of a Klatskin tumour (a hilar cholangiocarcinoma). The ophthalmologic evaluation revealed the best corrected visual acuity (BCVA) of 20/32 in the right eye (RE) and of 20/40 in the left eye (LE); biomicroscopy of anterior segment showed scleral icterus and fundoscopy revealed peripapillary cotton-wool spots, optic disc edema, and RPE hypo- and hyperpigmentation in the middle peripheral retina in both eyes with an intraretinal hemorrhage in the LE. 15 months after the initial presentation, without ophthalmological treatment, there was an improvement of BCVA to 20/20 in both eyes and optical coherence tomography (OCT) revealed areas of reduction of retinal nerve fiber layer thickness corresponding to the previous cotton-wool spots. Conclusion. Purtscher-like retinopathy should not be neglected in complex clinical contexts. Its unclear pathophysiology determines an uncertain treatment strategy, but a meticulous follow-up is compulsory in order to avoid its severe complications.
Resumo:
Although several postmortem findings in the retina of patients with Alzheimer's disease (AD) are available, new biomarkers for early diagnosis and follow-up of AD are still lacking. It has been postulated that the defects in the retinal nerve fiber layer (RNFL) may be the earliest sign of AD, even before damage to the hippocampal region that affects memory. This fact may reflect retinal neuronal-ganglion cell death and axonal loss in the optic nerve in addition to aging.
Resumo:
Diabetes is an increasingly prevalent disease worldwide. Providing early management of the complications can prevent morbidity and mortality in this population. Peripheral neuropathy, a significant complication of diabetes, is the major cause of foot ulceration and amputation in diabetes. Delay in attending to complication of the disease contributes to significant medical expenses for diabetic patients and the community. Early structural changes to the neural components of the retina have been demonstrated to occur prior to the clinically visible retinal vasculature complication of diabetic retinopathy. Additionally visual functionloss has been shown to exist before the ophthalmoscopic manifestations of vasculature damage. The purpose of this thesis was to evaluate the relationship between diabetic peripheral neuropathy and both retinal structure and visual function. The key question was whether diabetic peripheral neuropathy is the potential underlying factor responsible for retinal anatomical change and visual functional loss in people with diabetes. This study was conducted on a cohort with type 2 diabetes. Retinal nerve fibre layer thickness was assessed by means of Optical Coherence Tomography (OCT). Visual function was assessed using two different methods; Standard Automated Perimetry (SAP) and flicker perimetry were performed within the central 30 degrees of fixation. The level of diabetic peripheral neuropathy (DPN) was assessed using two techniques - Quantitative Sensory Testing and Neuropathy Disability Score (NDS). These techniques are known to be capable of detecting DPN at very early stages. NDS has also been shown as a gold standard for detecting 'risk of foot ulceration'. Findings reported in this thesis showed that RNFL thickness, particularly in the inferior quadrant, has a significant association with severity of DPN when the condition has been assessed using NDS. More specifically it was observed that inferior RNFL thickness has the ability to differentiate individuals who are at higher risk of foot ulceration from those who are at lower risk, indicating that RNFL thickness can predict late-staged DPN. Investigating the association between RNFL and QST did not show any meaningful interaction, which indicates that RNFL thickness for this cohort was not as predictive of neuropathy status as NDS. In both of these studies, control participants did not have different results from the type 2 cohort who did not DPN suggesting that RNFL thickness is not a marker for diagnosing DPN at early stages. The latter finding also indicated that diabetes per se, is unlikely to affect the RNFL thickness. Visual function as measured by SAP and flicker perimetry was found to be associated with severity of peripheral neuropathy as measured by NDS. These findings were also capable of differentiating individuals at higher risk of foot ulceration; however, visual function also proved not to be a maker for early diagnosis of DPN. It was found that neither SAP, nor flicker sensitivity have meaningful associations with DPN when neuropathy status was measured using QST. Importantly diabetic retinopathy did not explain any of the findings in these experiments. The work described here is valuable as no other research to date has investigated the association between diabetic peripheral neuropathy and either retinal structure or visual function.
Resumo:
Purpose: This study investigates the clinical utility of the melanopsin expressing intrinsically photosensitive retinal ganglion cell (ipRGC) controlled post-illumination pupil response (PIPR) as a novel technique for documenting inner retinal function in patients with Type II diabetes without diabetic retinopathy. Methods: The post-illumination pupil response (PIPR) was measured in seven patients with Type II diabetes, normal retinal nerve fiber thickness and no diabetic retinopathy. A 488 nm and 610 nm, 7.15º diameter stimulus was presented in Maxwellian view to the right eye and the left consensual pupil light reflex was recorded. Results: The group data for the blue PIPR (488 nm) identified a trend of reduced ipRGC function in patients with diabetes with no retinopathy. The transient pupil constriction was lower on average in the diabetic group. The relationship between duration of diabetes and the blue PIPR amplitude was linear, suggesting that ipRGC function decreases with increasing diabetes duration. Conclusion: This is the first report to show that the ipRGC controlled post-illumination pupil response may have clinical applications as a non-invasive technique for determining progression of inner neuroretinal changes in patients with diabetes before they are ophthalmoscopically or anatomically evident. The lower transient pupil constriction amplitude indicates that outer retinal photoreceptor inputs to the pupil light reflex may also be affected in diabetes.
Resumo:
Purpose To investigate the application of retinal nerve fibre layer (RNFL) thickness as a marker for severity of diabetic peripheral neuropathy (DPN) in people with Type 2 diabetes. Methods This was a cross-sectional study whereby 61 participants (mean age 61 [41-75 years], mean duration of diabetes 14 [1-40 years], 70% male) with Type 2 diabetes and DPN underwent optical coherence tomography (OCT) scans. Global and 4 quadrant (TSNI) RNFL thicknesses were measured at 3.45mm around the optic nerve head of one eye. Neuropathy disability score (NDS) was used to assess the severity of DPN on a 0 to 10 scale. Participants were divided into three age-matched groups representing mild (NDS=3-5), moderate (NDS=6-8) and severe (NDS=9-10) neuropathy. Two regression models were fitted for statistical analysis: 1) NDS scores as co-variate for global and quadrant RNFL thicknesses, 2) NDS groups as a factor for global RNFL thickness only. Results Mean (SD) RNFL thickness (µm) was 103(9) for mild neuropathy (n=34), 101(10) for moderate neuropathy (n=16) and 95(13) in the group with severe neuropathy (n=11). Global RNFL thickness and NDS scores were statistically significantly related (b=-1.20, p=0.048). When neuropathy was assessed across groups, a trend of thinner mean RNFL thickness was observed with increasing severity of neuropathy; however, this result was not statistically significant (F=2.86, p=0.065). TSNI quadrant analysis showed that mean RNFL thickness reduction in the inferior quadrant was 2.55 µm per 1 unit increase in NDS score (p=0.005). However, the regression coefficients were not statistically significant for RNFL thickness in the superior (b=-1.0, p=0.271), temporal (b=-0.90, p=0.238) and nasal (b=-0.99, p=0.205) quadrants. Conclusions RNFL thickness was reduced with increasing severity of DPN and the effect was most evident in the inferior quadrant. Measuring RNFL thickness using OCT may prove to be a useful, non-invasive technique for identifying severity of DPN and may also provide additional insight into common mechanisms for peripheral neuropathy and RNFL damage.
Resumo:
Background and aims: The assessment of intra-epidermal nerve fiber density (IENFD) in skin biopsies and corneal nerve fiber density (CNFD) using corneal confocal microscopy (CCM) provides promising techniques to detect small nerve fiber damage in patients with peripheral neuropathy. To help define the clinical utility of each of these techniques in patients with diabetic neuropathy we have assessed sensitivity and specificity of IENFD and CNFD in predicting the following: 1) diabetic polyneuropathy (DPN); 2) risk of foot ulceration (RFU); 3) initial small fiber neuropathy (iSFN); 4) severe small fiber neuropathy (sSFN)...
Resumo:
Using retinal imaging, the nature and extent of compromise of retinal structural integrity has been characterized in individuals suffering from diabetic peripheral neuropathy. These findings extend our understanding of the pathological processes involved in diabetic neuropathy and offer novel ophthalmic approaches to the diagnosis and monitoring of this debilitating condition.
Resumo:
Purpose : To investigate the application of retinal nerve fibre layer (RNFL) thickness as a marker for severity of diabetic peripheral neuropathy (DPN) in people with Type 2 diabetes. Methods : This was a cross-sectional study whereby 61 participants (mean age 61 [41-75 years], mean duration of diabetes 14 [1-40 years], 70% male) with Type 2 diabetes and DPN underwent optical coherence tomography (OCT) scans. Global and 4 quadrant (TSNI) RNFL thicknesses were measured at 3.45mm around the optic nerve head of one eye. Neuropathy disability score (NDS) was used to assess the severity of DPN on a 0 to 10 scale. Participants were divided into three age-matched groups representing mild (NDS=3-5), moderate (NDS=6-8) and severe (NDS=9-10) neuropathy. Two regression models were fitted for statistical analysis: 1) NDS scores as co-variate for global and quadrant RNFL thicknesses, 2) NDS groups as a factor for global RNFL thickness only. Results : Mean (SD) RNFL thickness (µm) was 103(9) for mild neuropathy (n=34), 101(10) for moderate neuropathy (n=16) and 95(13) in the group with severe neuropathy (n=11). Global RNFL thickness and NDS scores were statistically significantly related (b=-1.20, p=0.048). When neuropathy was assessed across groups, a trend of thinner mean RNFL thickness was observed with increasing severity of neuropathy; however, this result was not statistically significant (F=2.86, p=0.065). TSNI quadrant analysis showed that mean RNFL thickness reduction in the inferior quadrant was 2.55 µm per 1 unit increase in NDS score (p=0.005). However, the regression coefficients were not statistically significant for RNFL thickness in the superior (b=-1.0, p=0.271), temporal (b=-0.90, p=0.238) and nasal (b=-0.99, p=0.205) quadrants. Conclusions : RNFL thickness was reduced with increasing severity of DPN and the effect was most evident in the inferior quadrant. Measuring RNFL thickness using OCT may prove to be a useful, non-invasive technique for identifying severity of DPN and may also provide additional insight into common mechanisms for peripheral neuropathy and RNFL damage.
Resumo:
Aim Retinal tissue integrity in relation to diabetic neuropathy is not known. The aim of this study was to investigate retinal tissue thickness in relation to diabetic peripheral neuropathy (DPN) with and without diabetic retinopathy (DR). Methods Full retinal thickness at the parafoveal and perifoveal macula and neuro-retinal thickness around the optic nerve head (ONH) and at the macula was examined using spectral domain optical coherence tomography. The eye on the hand-dominant side of 85 individuals with type 1 diabetes and 66 individuals with type 2 diabetes, with or without DR and DPN, were compared to the eyes (n=45) of age-matched non-diabetic controls. Diabetic neuropathy was defined as Neuropathy Disability Score (NDS) ≥3 on a scale of 0-10. A general linear model was used to examine the relationship between diabetic neuropathy and foveal, parafoveal and perifoveal retinal thickness and neuro-retinal thickness, in relation to DR status, age, gender, HbA1c levels and duration of diabetes. A p-value of <0.05 was considered statistically significant. Results Perifoveal retinal thickness is reduced with increasing severity of neuropathy, especially in the inferior hemisphere (p=0.004); this effect was not related to age (p=0.088). For every unit increase in NDS score, the inferior perifoveal retinal thickness reduced by 1.64 μm. Neuro-retinal thickness around the ONH decreased with increasing severity of neuropathy (p<0.014 for average and hemisphere thicknesses); for every unit increase in NDS, neuro-retinal thickness around the ONH reduced by 1.23 μm. Retinal thickness in the parafovea was increased in the absence of DR (p<0.017 for average and hemisphere thicknesses). Neuro-retinal thickness at the macula was inversely related to age alone (p<0.001). All retinal parameters, except the inferior perifovea, reduced with advancing age (p<0.007 for all). Conclusions Diabetic neuropathy is associated with changes in full retinal thickness and neuro-retinal layers. This may represent a second threat to vision integrity, in addition to the better-characterised retinopathy. This study provides new knowledge about the anatomical aspects of the retinal tissue in relation to neuropathy and retinopathy.
Resumo:
OBJECTIVE Quantitative assessment of small fiber damage is key to the early diagnosis and assessment of progression or regression of diabetic sensorimotor polyneuropathy (DSPN). Intraepidermal nerve fiber density (IENFD) is the current gold standard, but corneal confocal microscopy (CCM), an in vivo ophthalmic imaging modality, has the potential to be a noninvasive and objective image biomarker for identifying small fiber damage. The purpose of this study was to determine the diagnostic performance of CCM and IENFD by using the current guidelines as the reference standard. RESEARCH DESIGN AND METHODS Eighty-nine subjects (26 control subjects and 63 patients with type 1 diabetes), with and without DSPN, underwent a detailed assessment of neuropathy, including CCM and skin biopsy. RESULTS Manual and automated corneal nerve fiber density (CNFD) (P < 0.0001), branch density (CNBD) (P < 0.0001) and length (CNFL) (P < 0.0001), and IENFD (P < 0.001) were significantly reduced in patients with diabetes with DSPN compared with control subjects. The area under the receiver operating characteristic curve for identifying DSPN was 0.82 for manual CNFD, 0.80 for automated CNFD, and 0.66 for IENFD, which did not differ significantly (P = 0.14). CONCLUSIONS This study shows comparable diagnostic efficiency between CCM and IENFD, providing further support for the clinical utility of CCM as a surrogate end point for DSPN.
Resumo:
We describe a combined stain for simultaneous demonstration of the preterminal axons and cholinesterase activity at myoneural junctions of mammalian muscles. This technique employs acetylthiocholine iodide as the substrate for cholinesterase activity and silver nitrate impregnation of preterminal axons. The procedure is rapid, simple and uses fresh muscles. Intramuscular nerves, preterminal axons and myoneural junctions are stained simultaneously brown or black with minimal background staining of connective tissue and muscle fibers.
Resumo:
PURPOSE To investigate retrograde axonal degeneration for its potential to cause microcystic macular edema (MME), a maculopathy that has been previously described in patients with demyelinating disease. To identify risk factors for MME and to expand the anatomic knowledge on MME. DESIGN Retrospective case series. PARTICIPANTS We included 117 consecutive patients and 180 eyes with confirmed optic neuropathy of variable etiology. Patients with glaucoma were excluded. METHODS We determined age, sex, visual acuity, etiology of optic neuropathy, and the temporal and spatial characteristics of MME. Eyes with MME were compared with eyes with optic neuropathy alone and to healthy fellow eyes. With retinal layer segmentation we quantitatively measured the intraretinal anatomy. MAIN OUTCOME MEASURES Demographic data, distribution of MME in the retina, and thickness of retinal layers were analyzed. RESULTS We found MME in 16 eyes (8.8%) from 9 patients, none of whom had multiple sclerosis or neuromyelitis optica. The MME was restricted to the inner nuclear layer (INL) and had a characteristic perifoveal circular distribution. Compared with healthy controls, MME was associated with significant thinning of the ganglion cell layer and nerve fiber layer, as well as a thickening of the INL and the deeper retinal layers. Youth is a significant risk factor for MME. CONCLUSIONS Microcystic macular edema is not specific for demyelinating disease. It is a sign of optic neuropathy irrespective of its etiology. The distinctive intraretinal anatomy suggests that MME is caused by retrograde degeneration of the inner retinal layers, resulting in impaired fluid resorption in the macula.
Resumo:
PURPOSE: To characterize cyan fluorescent protein (CFP) expression in the retina of the thy1-CFP (B6.Cg-Tg(Thy1-CFP)23Jrs/J) transgenic mouse line. METHODS: CFP expression was characterized using morphometric methods and immunohistochemistry with antibodies to neurofilament light (NF-L), neuronal nuclei (NeuN), POU-domain protein (Brn3a) and calretinin, which immunolabel ganglion cells, and syntaxin 1 (HPC-1), glutamate decarboxylase 67 (GAD(67)), GABA plasma membrane transporter-1 (GAT-1), and choline acetyltransferase (ChAT), which immunolabel amacrine cells. RESULTS: CFP was extensively expressed in the inner retina, primarily in the inner plexiform layer (IPL), ganglion cell layer (GCL), nerve fiber layer, and optic nerve. CFP fluorescent cell bodies were in all retinal regions and their processes ramified in all laminae of the IPL. Some small, weakly CFP fluorescent somata were in the inner nuclear layer (INL). CFP-containing somata in the GCL ranged from 6 to 20 microm in diameter, and they had a density of 2636+/-347 cells/mm2 at 1.5 mm from the optic nerve head. Immunohistochemical studies demonstrated colocalization of CFP with the ganglion cell markers NF-L, NeuN, Brn3a, and calretinin. Immunohistochemistry with antibodies to HPC-1, GAD(67), GAT-1, and ChAT indicated that the small, weakly fluorescent CFP cells in the INL and GCL were cholinergic amacrine cells. CONCLUSIONS: The total number and density of CFP-fluorescent cells in the GCL were within the range of previous estimates of the total number of ganglion cells in the C57BL/6J line. Together these findings suggest that most ganglion cells in the thy1-CFP mouse line 23 express CFP. In conclusion, the thy1-CFP mouse line is highly useful for studies requiring the identification of ganglion cells.
Resumo:
Endometriosis is an extremely prevalent estrogen-dependent condition characterized by the growth of ectopic endometrial tissue outside the uterine cavity, and is often presented with severe pain. Although the relationship between lesion and pain remains unclear, nerve fibers found in close proximity to endometriotic lesions may be related to pain. Also, women with endometriosis pain develop central sensitization. Endometriosis creates an inflammatory environment and recent research is beginning to elucidate the role of inflammation in stimulating peripheral nerve sensitization. In this review, we discuss endometriosis-associated inflammation, peripheral nerve fibers, and assess their potential mechanism of interaction. We propose that an interaction between lesions and nerve fibers, mediated by inflammation, may be important in endometriosis-associated pain.
Resumo:
We review the mechanical origin of auditory-nerve excitation, focusing on comparisons of the magnitudes and phases of basilar-membrane (BM) vibrations and auditory-nerve fiber responses to tones at a basal site of the chinchilla cochlea with characteristic frequency ≈ 9 kHz located 3.5 mm from the oval window. At this location, characteristic frequency thresholds of fibers with high spontaneous activity correspond to magnitudes of BM displacement or velocity in the order of 1 nm or 50 μm/s. Over a wide range of stimulus frequencies, neural thresholds are not determined solely by BM displacement but rather by a function of both displacement and velocity. Near-threshold, auditory-nerve responses to low-frequency tones are synchronous with peak BM velocity toward scala tympani but at 80–90 dB sound pressure level (in decibels relative to 20 microPascals) and at 100–110 dB sound pressure level responses undergo two large phase shifts approaching 180°. These drastic phase changes have no counterparts in BM vibrations. Thus, although at threshold levels the encoding of BM vibrations into spike trains appears to involve only relatively minor signal transformations, the polarity of auditory-nerve responses does not conform with traditional views of how BM vibrations are transmitted to the inner hair cells. The response polarity at threshold levels, as well as the intensity-dependent phase changes, apparently reflect micromechanical interactions between the organ of Corti, the tectorial membrane and the subtectorial fluid, and/or electrical and synaptic processes at the inner hair cells.