968 resultados para QUANTIZED WEYL ALGEBRA
Resumo:
Let D denote the open unit disk in C centered at 0. Let H-R(infinity) denote the set of all bounded and holomorphic functions defined in D that also satisfy f(z) = <(f <(z)over bar>)over bar> for all z is an element of D. It is shown that H-R(infinity) is a coherent ring.
Resumo:
We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real Linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of 'multiplying' two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed as a generalization of that for SU(2), and the specifically new features are brought out. Application to the dynamics of three-level systems is outlined.
Resumo:
Numerical Linear Algebra (NLA) kernels are at the heart of all computational problems. These kernels require hardware acceleration for increased throughput. NLA Solvers for dense and sparse matrices differ in the way the matrices are stored and operated upon although they exhibit similar computational properties. While ASIC solutions for NLA Solvers can deliver high performance, they are not scalable, and hence are not commercially viable. In this paper, we show how NLA kernels can be accelerated on REDEFINE, a scalable runtime reconfigurable hardware platform. Compared to a software implementation, Direct Solver (Modified Faddeev's algorithm) on REDEFINE shows a 29X improvement on an average and Iterative Solver (Conjugate Gradient algorithm) shows a 15-20% improvement. We further show that solution on REDEFINE is scalable over larger problem sizes without any notable degradation in performance.
Resumo:
In this paper, we address the design of codes which achieve modulation diversity in block fading single-input single-output (SISO) channels with signal quantization at the receiver. With an unquantized receiver, coding based on algebraic rotations is known to achieve maximum modulation coding diversity. On the other hand, with a quantized receiver, algebraic rotations may not guarantee gains in diversity. Through analysis, we propose specific rotations which result in the codewords having equidistant component-wise projections. We show that the proposed coding scheme achieves maximum modulation diversity with a low-complexity minimum distance decoder and perfect channel knowledge. Relaxing the perfect channel knowledge assumption we propose a novel channel training/estimation technique to estimate the channel. We show that our coding/training/estimation scheme and minimum distance decoding achieves an error probability performance similar to that achieved with perfect channel knowledge.
Resumo:
In this paper, we investigate the achievable rate region of Gaussian multiple access channels (MAC) with finite input alphabet and quantized output. With finite input alphabet and an unquantized receiver, the two-user Gaussian MAC rate region was studied. In most high throughput communication systems based on digital signal processing, the analog received signal is quantized using a low precision quantizer. In this paper, we first derive the expressions for the achievable rate region of a two-user Gaussian MAC with finite input alphabet and quantized output. We show that, with finite input alphabet, the achievable rate region with the commonly used uniform receiver quantizer has a significant loss in the rate region compared. It is observed that this degradation is due to the fact that the received analog signal is densely distributed around the origin, and is therefore not efficiently quantized with a uniform quantizer which has equally spaced quantization intervals. It is also observed that the density of the received analog signal around the origin increases with increasing number of users. Hence, the loss in the achievable rate region due to uniform receiver quantization is expected to increase with increasing number of users. We, therefore, propose a novel non-uniform quantizer with finely spaced quantization intervals near the origin. For a two-user Gaussian MAC with a given finite input alphabet and low precision receiver quantization, we show that the proposed non-uniform quantizer has a significantly larger rate region compared to what is achieved with a uniform quantizer.
Resumo:
We propose a novel method of constructing Dispersion Matrices (DM) for Coherent Space-Time Shift Keying (CSTSK) relying on arbitrary PSK signal sets by exploiting codes from division algebras. We show that classic codes from Cyclic Division Algebras (CDA) may be interpreted as DMs conceived for PSK signal sets. Hence various benefits of CDA codes such as their ability to achieve full diversity are inherited by CSTSK. We demonstrate that the proposed CDA based DMs are capable of achieving a lower symbol error ratio than the existing DMs generated using the capacity as their optimization objective function for both perfect and imperfect channel estimation.
Resumo:
With no Channel State Information (CSI) at the users, transmission over the two-user Gaussian Multiple Access Channel with fading and finite constellation at the input, will have high error rates due to multiple access interference (MAI). However, perfect CSI at the users is an unrealistic assumption in the wireless scenario, as it would involve extremely large feedback overheads. In this paper we propose a scheme which removes the adverse effect of MAI using only quantized knowledge of fade state at the transmitters such that the associated overhead is nominal. One of the users rotates its constellation relative to the other without varying the transmit power to adapt to the existing channel conditions, in order to meet certain predetermined minimum Euclidean distance requirement in the equivalent constellation at the destination. The optimal rotation scheme is described for the case when both the users use symmetric M-PSK constellations at the input, where M = 2(gimel), gimel being a positive integer. The strategy is illustrated by considering the example where both the users use QPSK signal sets at the input. The case when the users use PSK constellations of different sizes is also considered. It is shown that the proposed scheme has considerable better error performance compared to the conventional non-adaptive scheme, at the cost of a feedback overhead of just log log(2) (M-2/8 - M/4 + 2)] + 1 bits, for the M-PSK case.
Resumo:
For transmission over the two-user Gaussian Multiple Access Channel with fading and finite constellation at the inputs, we propose a scheme which uses only quantized knowledge of fade state at users with the feedback overhead being nominal. One of the users rotates its constellation without varying the transmit power to adapt to the existing channel conditions, in order to meet certain pre-determined minimum Euclidean distance requirement in the equivalent constellation at the destination. The optimal modulation scheme has been described for the case when both the users use symmetric M-PSK constellations at the input, where M = 2λ, λ being a positive integer. The strategy has been illustrated by considering examples where both the users use QPSK signal set at the input. It is shown that the proposed scheme has considerable better error performance compared to the conventional non-adaptive scheme, at the cost of a feedback overhead of just [log2 (M2/8 - M/4 + 2)] + 1 bits, for the M-PSK case.
Achievable rate region of gaussian broadcast channel with finite input alphabet and quantized output
Resumo:
In this paper, we study the achievable rate region of two-user Gaussian broadcast channel (GBC) when the messages to be transmitted to both the users take values from finite signal sets and the received signal is quantized at both the users. We refer to this channel as quantized broadcast channel (QBC). We first observe that the capacity region defined for a GBC does not carry over as such to QBC. Also, we show that the optimal decoding scheme for GBC (i.e., high SNR user doing successive decoding and low SNR user decoding its message alone) is not optimal for QBC. We then propose an achievable rate region for QBC based on two different schemes. We present achievable rate region results for the case of uniform quantization at the receivers. We find that rotation of one of the user's input alphabet with respect to the other user's alphabet marginally enlarges the achievable rate region of QBC when almost equal powers are allotted to both the users.