41 resultados para QSPR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A surface plasmon resonance (SPR) optical biosensor method was developed for the detection of paralytic shellfish poisoning (PSP) toxins in shellfish. This application was transferred in the form of a prototype kit to seven laboratories using Biacore QSPR optical biosensor instrumentation for interlaboratory evaluation. Each laboratory received 20 shellfish samples across a range of species including blind duplicates for analysis. The samples consisted of 4 noncontaminated samples spiked in duplicate with a low level of PSP toxins (240 mu g STXcliHCl equivalents/kg), a high level of saxitoxin (825 mu g STXdiHCl/kg), 2 noncontarninated, and 14 naturally contaminated samples. All 7 participating laboratories completed the study, and HorRat values obtained were

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative structure-property relationship (QSPR) models were firstly established for the hydrophobic substituent constant (πX) using the theoretical descriptors derived solely from electrostatic potentials (EPSs) at the substituent atoms. The descriptors introduced are found to be related to hydrogen-bond basicity, hydrogen-bond acidity, cavity, or dipolarity/polarizability terms in linear solvation energy relationship, which endows the models good interpretability. The predictive capabilities of the models constructed were also verified by rigorous Monte Carlo cross-validation. Then, eight groups of meta- or para- disubstituted benzenes and one group of substituted pyridines were investigated. QSPR models for individual systems were achieved with the ESP-derived descriptors. Additionally, two QSPR models were also established for Rekker's fragment constants (foct), which is a secondary-treatment quantity and reflects average contribution of the fragment to logP. It has been demonstrated that the descriptors derived from ESPs at the fragments, can be well used to quantitatively express the relationship between fragment structures and their hydrophobic properties, regardless of the attached parent structure or the valence state. Finally, the relations of Hammett σ constant and ESP quantities were explored. It implies that σ and π, which are essential in classic QSAR and represent different type of contributions to biological activities, are also complementary in interaction site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Informática (Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les modèles pharmacocinétiques à base physiologique (PBPK) permettent de simuler la dose interne de substances chimiques sur la base de paramètres spécifiques à l’espèce et à la substance. Les modèles de relation quantitative structure-propriété (QSPR) existants permettent d’estimer les paramètres spécifiques au produit (coefficients de partage (PC) et constantes de métabolisme) mais leur domaine d’application est limité par leur manque de considération de la variabilité de leurs paramètres d’entrée ainsi que par leur domaine d’application restreint (c. à d., substances contenant CH3, CH2, CH, C, C=C, H, Cl, F, Br, cycle benzénique et H sur le cycle benzénique). L’objectif de cette étude est de développer de nouvelles connaissances et des outils afin d’élargir le domaine d’application des modèles QSPR-PBPK pour prédire la toxicocinétique de substances organiques inhalées chez l’humain. D’abord, un algorithme mécaniste unifié a été développé à partir de modèles existants pour prédire les PC de 142 médicaments et polluants environnementaux aux niveaux macro (tissu et sang) et micro (cellule et fluides biologiques) à partir de la composition du tissu et du sang et de propriétés physicochimiques. L’algorithme résultant a été appliqué pour prédire les PC tissu:sang, tissu:plasma et tissu:air du muscle (n = 174), du foie (n = 139) et du tissu adipeux (n = 141) du rat pour des médicaments acides, basiques et neutres ainsi que pour des cétones, esters d’acétate, éthers, alcools, hydrocarbures aliphatiques et aromatiques. Un modèle de relation quantitative propriété-propriété (QPPR) a été développé pour la clairance intrinsèque (CLint) in vivo (calculée comme le ratio du Vmax (μmol/h/kg poids de rat) sur le Km (μM)), de substrats du CYP2E1 (n = 26) en fonction du PC n octanol:eau, du PC sang:eau et du potentiel d’ionisation). Les prédictions du QPPR, représentées par les limites inférieures et supérieures de l’intervalle de confiance à 95% à la moyenne, furent ensuite intégrées dans un modèle PBPK humain. Subséquemment, l’algorithme de PC et le QPPR pour la CLint furent intégrés avec des modèles QSPR pour les PC hémoglobine:eau et huile:air pour simuler la pharmacocinétique et la dosimétrie cellulaire d’inhalation de composés organiques volatiles (COV) (benzène, 1,2-dichloroéthane, dichlorométhane, m-xylène, toluène, styrène, 1,1,1 trichloroéthane et 1,2,4 trimethylbenzène) avec un modèle PBPK chez le rat. Finalement, la variabilité de paramètres de composition des tissus et du sang de l’algorithme pour les PC tissu:air chez le rat et sang:air chez l’humain a été caractérisée par des simulations Monte Carlo par chaîne de Markov (MCMC). Les distributions résultantes ont été utilisées pour conduire des simulations Monte Carlo pour prédire des PC tissu:sang et sang:air. Les distributions de PC, avec celles des paramètres physiologiques et du contenu en cytochrome P450 CYP2E1, ont été incorporées dans un modèle PBPK pour caractériser la variabilité de la toxicocinétique sanguine de quatre COV (benzène, chloroforme, styrène et trichloroéthylène) par simulation Monte Carlo. Globalement, les approches quantitatives mises en œuvre pour les PC et la CLint dans cette étude ont permis l’utilisation de descripteurs moléculaires génériques plutôt que de fragments moléculaires spécifiques pour prédire la pharmacocinétique de substances organiques chez l’humain. La présente étude a, pour la première fois, caractérisé la variabilité des paramètres biologiques des algorithmes de PC pour étendre l’aptitude des modèles PBPK à prédire les distributions, pour la population, de doses internes de substances organiques avant de faire des tests chez l’animal ou l’humain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En aquest treball es descriu l'ús de les mesures de semblança molecular quàntica (MSMQ) per a caracteritzar propietats i activitats biològiques moleculars, i definir descriptors emprables per a construir models QSAR i QSPR. L'estudi que es presenta consisteix en la continuació d'un treball recent, on es descrivien relacions entre el paràmetre log P i MSMQ, donant així una alternativa a aquest parimetre hidrofòbic empíric. L'actual contribució presenta una nova mesura, capaç d'estendre l'ús de les MSMQ, que consisteix en l'energia de repulsió electró-electró (Vee). Aquest valor, disponible normalment a partir de programari de química quàntica, considera la molècula com una sola entitat, i no cal recórrer a l'ús de contribucions de fragments. La metodologia s'ha aplicat a cinc tipus diferents de compostos on diferents propietats moleculars i activitats biològiques s'han correlacionat amb Vee com a únic descriptor molecular. En tots els casos estudiats, s'han obtingut correlacions satisfactòries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Es mostra que, gracies a una extensió en la definició dels Índexs Moleculars Topològics, s'arriba a la formulació d'índexs relacionats amb la teoria de la Semblança Molecular Quàntica. Es posa de manifest la connexió entre les dues metodologies: es revela que un marc de treball teòric sòlidament fonamentat sobre la teoria de la Mecànica Quàntica es pot connectar amb una de les tècniques més antigues relacionades amb els estudis de QSPR. Es mostren els resultats per a dos casos d'exemple d'aplicació d'ambdues metodologies

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Descriptors and quantitative structure property relationships (QSPR) were investigated for mechanical property prediction of carbon nanotubes (CNTs). 78 molecular dynamics (MD) simulations were carried out, and 20 descriptors were calculated to build quantitative structure property relationships (QSPRs) for Young's modulus and Poisson's ratio in two separate analyses: vacancy only and vacancy plus methyl functionalization. In the first analysis, C N2/CT (number of non-sp2 hybridized carbons per the total carbons) and chiral angle were identified as critical descriptors for both Young's modulus and Poisson's ratio. Further analysis and literature findings indicate the effect of chiral angle is negligible at larger CNT radii for both properties. Raman spectroscopy can be used to measure CN2/C T, providing a direct link between experimental and computational results. Poisson's ratio approaches two different limiting values as CNT radii increases: 0.23-0.25 for chiral and armchair CNTs and 0.10 for zigzag CNTs (surface defects <3%). In the second analysis, the critical descriptors were CN2/CT, chiral angle, and MN/CT (number of methyl groups per total carbons). These results imply new types of defects can be represented as a new descriptor in QSPR models. Finally, results are qualified and quantified against experimental data. © 2013 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blood-brain barrier (BBB) permeation is an essential property for drugs that act in the central nervous system (CNS) for the treatment of human diseases, such as epilepsy, depression, Alzheimer's disease, Parkinson disease, schizophrenia, among others. In the present work, quantitative structure-property relationship (QSPR) studies were conducted for the development and validation of in silico models for the prediction of BBB permeation. The data set used has substantial chemical diversity and a relatively wide distribution of property values. The generated QSPR models showed good statistical parameters and were successfully employed for the prediction of a test set containing 48 compounds. The predictive models presented herein are useful in the identification, selection and design of new drug candidates having improved pharmacokinetic properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME - absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de mestrado, Bioinformática e Biologia Computacional (Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2016