842 resultados para Pyrolysis organometallics
Resumo:
Nanostructured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition. A two zone furnace with a uniform temperature over a length of 20 cm in both the zones was built. The precursor Azabenzimidazole (C6H5N3) taken in a quartz tube was evaporated at zone A and pyrolysed at zone B at a temperature of 800 degrees C. The FTIR spectrum of the prepared sample shows peaks at 1272 cm(-1) and 1591 cm(-1) corresponding to C-N stretching and C=N respectively, which confirms the bonding of nitrogen with carbon. Raman D and G peaks are observed at 1357 cm(-1) and 1560 cm(-1) respectively. X-ray photoelectron spectroscopy (XPS) shows the formation of pi bonding between carbon and nitrogen atoms. These observations along with XRD analysis show the formation of crystallites of alpha-C3N4 and beta-C3N4 in the background of graphitic C3N4. The size of the nanocrystals estimated from the SEM images is similar to 100 nm.
Resumo:
Mononuclear Group 6 metal tetracarbonyl complexes containing a cyclodiphosphazane ligand, [PhNP(OC(6)H(4)Me-p)](2) (L), have been used as synthons to prepare homo- and hetero-bimetallic complexes in which the cyclodiphosphazane bridges the two metal centres in its cis or trans isomeric forms. The dimolybdenum complex [Mo-2(eta(5)-C5H5)(2)(CO)(4)(mu-L)] has also been synthesized. The trends in P-31 NMR chemical shifts and the structural features as revealed by X-ray crystallography are discussed.
Resumo:
CZTS (Copper Zinc Tin Sulphide) is a wide band gap quartnery chalcopyrite which has a band gap of about 1.45 eV and an absorption coefficient of 10(4) cm(-1); thus making it an ideal material to be used as an absorber layer in solar cells. Ultrasonic Spray Pyrolysis is a deposition technique, where the solution is atomized ultrasonically, thereby giving a fine mist having a narrow size distribution which can be used for uniform coatings on substrates. An Ultrasonic Spray Pyrolysis equipment was developed and CZTS absorber layers were successfully grown with this technique on soda lime glass substrates using aqueous solutions. Substrate temperatures ranging from 523 K to 723 K were used to deposit the CZTS layers and these films were characterized using SEM, EDAX and XRD. It was observed that the film crystallized in the kesterite structure and the best crystallites were obtained at 613 K. It was observed that the grain size progressively increased with temperature. The optical band gap of the material was obtained as 1.54 eV.
Resumo:
The thermal degradation products of two sulfur polymers, poly(styrenedisulfide) (PSD) and poly(styrenetetrasulfide) (PST), were investigated in parallel by direct pyrolysis-mass spectrometry (DPMS) and by flash pyrolysis-GC/MS (Py-GC/MS). The time-scale of the two pyrolysis techniques is quite different, and therefore they were able to detect significantly different products in the pyrolysis of PSD and PST because of the thermal lability of sulfur-containing compounds. However, the results obtained are not contradictory, and satisfactory mechanisms for the thermal degradation of PSD and PST have been derived from the overall evidence available. Pyrolysis compounds containing sulfur, styrene, and a number of cyclic styrene sulfides and diphenyldithianes have been observed by DPMS. However, in flash pyrolysis-GC/MS, styrene, sulfur, only one cyclic styrene sulfide, and two isomers of diphenylthiophene have been detected. These thiophene derivatives were indeed absent among the compounds obtained by DPMS because they were the terminal (most thermally stable) species arising from further decomposition of the cyclic styrene sulfides formed in the primary thermal degradation processes of PSD and PST.
Resumo:
An analysis of the primary degradation products of the widely used commercial polysulfide polymer Thiokol LP-33 by direct pyrolysis-mass spectrometry (DP-MS) is reported. The mechanism of degradation is through a radical process involving the random cleavage of a formal C-O bond followed by backbiting to form the cyclic products.
Resumo:
he ortho methoxycarbonyl substituent constitutes a sole exception in the ring closure reactions of ortho substituted aryl azides, as it provides no rate acceleration to this reaction. Pyrolysis of ''azido-meta-hemipinate'', an aryl azide containing such a substituent, led us to the title compound, a new azepinylidenepyridylacetic ester, whose structure has been established unambiguously by a single crystal X-ray diffraction study. This is the first report of a reaction involving both a ring expansion to an azaheptafulvalene and a ring extrusion to a pyridyl ring residue.
Resumo:
Nebulized spray pyrolysis provides a good low?temperature chemical route for preparing thin films of PbTiO3, (Pb0.9,La0.1)TiO3 and Pb(Zr0.52,Ti0.48)O3. The films are a? or c? axis oriented, with spherical grains of ?30 nm and give satisfactory P?E hysteresis loops. © 1995 American Institute of Physics.
Resumo:
The technique of nebulized spray pyrolysis has been explored to find out whether oriented films of certain important oxides can be produced on single-crystal substrates by this relatively gentle method. Starting with acetylacetonate precursors, oriented films of metallic LaNiO3 containing nearly spherical grains (30 nm) have been obtained. Films of near-stoichiometric La4Ni3O10 and La3Ni2O7 showing metallic conductivity have been obtained by this method. This is indeed gratifying since it is difficult to prepare monophasic and stoichiometric bulk samples of these materials. Films of La2NiO4 show the expected semiconducting behavior. In the La-Cu-O system, starting with acetylacetonates, we have obtained films mainly comprising semiconducting La2Cu2O5, which is generally difficult to prepare in bulk form. More interestingly, nebulized spray pyrolysis gives excellent stoichiometric films of Pb(Zr0.52Ti0.48)O-3 consisting of nearly spherical grains (30 nm) which show ferroelectric behavior. The present investigation demonstrates that nebulized spray pyrolysis provides a useful and desirable route to deposite oriented films of complex oxide materials on single-crystal substrates.
Resumo:
Laser micro-Raman spectroscopic measurements were done on the amorphous conducting carbon films obtained from maleic anhydride by pyrolysis process. We have found a predominant broad peak around 1140 cm(-1), in addition to the normally observed peaks in amorphous carbons around 1350 and 1600 cm(-1), and peak of medium intensity around 800 cm(-1). Here we discuss the possibility of conjugated polymer like bond alternating structure which can give rise to these unusual Raman features. (C) 1997 American Institute of Physics.
Resumo:
Nebulized spray pyrolysis of metal-organic precursors in methanol solution has been employed to prepare powders of TiO2, ZrO2 and PbZr0.5Ti0.5O3 (PZT). This process ensures complete decomposition of the precursors at relatively low temperatures. The particles have been examined by scanning and transmission electron microscopy as well as X-ray diffraction. As prepared, the particles are hollow agglomerates of diameter 0.1-1.6 mu m, but after heating to higher temperatures the ultimate size of the particles comprising the agglomerates are considerably smaller (0.1 mu m or less in diameter) and crystalline.
Resumo:
Aqueous solutions of acetates and nitrates of zinc and cobalt have been spray decomposed to study the production of extended solid solutions in the ZnO-CoO system. Examination of the products of a variety of synthesis conditions indicates that up to 70% CoO may be retained in the solid solution in the wurzite phase, even though a comparison of the equilibrium solubility in the phase diagram might be expected to favor the formation of a rock-salt-based solid solution.
Resumo:
This is the first report on the analysis of random block polysulfide copolymers containing different amounts of repeating units in the copolymer backbone, which has been studied by direct pyrolysis mass spectrometry (DPMS) and by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The homopolymers such as poly(ethylene sulfide) (PES), poly(styrene sulfide) (PSS), and two random copolymers, viz., poly(ethylene sulfide(x)-co-styrene sulfide(y)) [copolymer I (x = y = 0.5) and copolymer II (x = 0.74, y = 0.26)] were investigated by both DPMS and Py-GC/MS (except copolymer II) techniques. In the case of copolymer I, the thermal degradation products of SE1, SE2, S-2, and S2E (S = styrene sulfide, E = ethylene sulfide) were detected in DPMS, whereas the formation of SE1 and SE2 were observed by Py-GC/MS technique. However, for copolymer II, SE3 was also found along with SE1, SE2, S-2, and S2E in DPMS. The formation of additional product (SE3) observed in copolymer II could be due to an increase in the block length formed during copolymerization. Further, a comparative study on thermal degradation of PES, poly(ethylene disulfide) (PEDS), and poly(ethylene tetrasulfide) (PETS) were investigated by Py-GC/MS. The pyrolysis products detected by both DPMS and Py-GC/MS indicates that the thermal decomposition of these polymers yield cyclic sulfides through an intramolecular exchange or by backbiting processes. The linear products with thiol and vinyl groups were also observed by Py-GC/MS along with the cyclic products via carbon hydrogen transfer reaction.
Resumo:
Synthesis of nanoparticles of Ni-Zn ferrite dispersed in aniline formaldehyde copolymer using a room temperature route and the effect of heat treatment on these samples were studied using XRD, FTIR spectroscopy, Fe-57 Mossbauer spectroscopy and TEM microscopy. The results show the formation of nanosized particles of Ni-Zn ferrite in the polymer matrix at room temperature. On pyrolysis, the Ni-Zn ferrite phase persists up to 500 degreesC. However, heating of composites to 700 degreesC results in the partial reduction of the spinet ferrite leading to the formation of Ni-Fe alloy under ambient conditions and complete reduction of the alloy on heating in inert atmosphere. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Nanocrystalline alpha-alumina was synthesized in an indigenously built ultrasonic flame pyrolysis (UFP) setup. This paper describes the technical aspects of the apparatus and particle formation in the flame. Ultrasonically atomized aluminium nitrate dissolved in methanol-water mixture was pyrolyzed in an oxy-propane flame for yielding nanocrystalline alpha-alumina. The formation of nanophase alumina was confirmed by powder XRD analysis. Scanning electron microscopy (SEM) analysis was carried out to study particulate morphology. (C) 2003 Elsevier Science Ltd. All rights reserved.