956 resultados para Probabilistic robotics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proceedings of the International Conference on Computer Vision Theory and Applications, 361-365, 2013, Barcelona, Spain

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a novel fully probabilistic solution to the stereo egomotion estimation problem. We extend the notion of probabilistic correspondence to the stereo case which allow us to compute the whole 6D motion information in a probabilistic way. We compare the developed approach against other known state-of-the-art methods for stereo egomotion estimation, and the obtained results compare favorably both for the linear and angular velocities estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a multi-robot cooperative framework to estimate the 3D position of dynamic targets, based on bearing-only vision measurements. The uncertainty of the observation provided by each robot equipped with a bearing-only vision system is effectively addressed for cooperative triangulation purposes by weighing the contribution of each monocular bearing ray in a probabilistic manner. The envisioned framework is evaluated in an outdoor scenario with a team of heterogeneous robots composed of an Unmanned Ground and Aerial Vehicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focus on the probabilistic modelling of mechanical properties of prestressing strands based on data collected from tensile tests carried out in Laboratório Nacional de Engenharia Civil (LNEC), Portugal, for certification purposes, and covers a period of about 9 years of production. The strands studied were produced by six manufacturers from four countries, namely Portugal, Spain, Italy and Thailand. Variability of the most important mechanicalproperties is examined and the results are compared with the recommendations of the ProbabilisticModel Code, as well as the Eurocodes and earlier studies. The obtained results show a very low variability which, of course, benefits structural safety. Based on those results, probabilistic modelsfor the most important mechanical properties of prestressing strands are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Informática, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assessment of existing timber structures is often limited to information obtained from non or semi destructive testing, as mechanical testing is in many cases not possible due to its destructive nature. Therefore, the available data provides only an indirect measurement of the reference mechanical properties of timber elements, often obtained through empirical based correlations. Moreover, the data must result from the combination of different tests, as to provide a reliable source of information for a structural analysis. Even if general guidelines are available for each typology of testing, there is still a need for a global methodology allowing to combine information from different sources and infer upon that information in a decision process. In this scope, the present work presents the implementation of a probabilistic based framework for safety assessment of existing timber elements. This methodology combines information gathered in different scales and follows a probabilistic framework allowing for the structural assessment of existing timber elements with possibility of inference and updating of its mechanical properties, through Bayesian methods. The probabilistic based framework is based in four main steps: (i) scale of information; (ii) measurement data; (iii) probability assignment; and (iv) structural analysis. In this work, the proposed methodology is implemented in a case study. Data was obtained through a multi-scale experimental campaign made to old chestnut timber beams accounting correlations of non and semi-destructive tests with mechanical properties. Finally, different inference scenarios are discussed aiming at the characterization of the safety level of the elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Series: "Advances in intelligent systems and computing , ISSN 2194-5357, vol. 417"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel framework for probabilistic-based structural assessment of existing structures, which combines model identification and reliability assessment procedures, considering in an objective way different sources of uncertainty, is presented in this paper. A short description of structural assessment applications, provided in literature, is initially given. Then, the developed model identification procedure, supported in a robust optimization algorithm, is presented. Special attention is given to both experimental and numerical errors, to be considered in this algorithm convergence criterion. An updated numerical model is obtained from this process. The reliability assessment procedure, which considers a probabilistic model for the structure in analysis, is then introduced, incorporating the results of the model identification procedure. The developed model is then updated, as new data is acquired, through a Bayesian inference algorithm, explicitly addressing statistical uncertainty. Finally, the developed framework is validated with a set of reinforced concrete beams, which were loaded up to failure in laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent decades, an increased interest has been evidenced in the research on multi-scale hierarchical modelling in the field of mechanics, and also in the field of wood products and timber engineering. One of the main motivations for hierar-chical modelling is to understand how properties, composition and structure at lower scale levels may influence and be used to predict the material properties on a macroscopic and structural engineering scale. This chapter presents the applicability of statistic and probabilistic methods, such as the Maximum Likelihood method and Bayesian methods, in the representation of timber’s mechanical properties and its inference accounting to prior information obtained in different importance scales. These methods allow to analyse distinct timber’s reference properties, such as density, bending stiffness and strength, and hierarchically consider information obtained through different non, semi or destructive tests. The basis and fundaments of the methods are described and also recommendations and limitations are discussed. The methods may be used in several contexts, however require an expert’s knowledge to assess the correct statistic fitting and define the correlation arrangement between properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La verificación y el análisis de programas con características probabilistas es una tarea necesaria del quehacer científico y tecnológico actual. El éxito y su posterior masificación de las implementaciones de protocolos de comunicación a nivel hardware y soluciones probabilistas a problemas distribuidos hacen más que interesante el uso de agentes estocásticos como elementos de programación. En muchos de estos casos el uso de agentes aleatorios produce soluciones mejores y más eficientes; en otros proveen soluciones donde es imposible encontrarlas por métodos tradicionales. Estos algoritmos se encuentran generalmente embebidos en múltiples mecanismos de hardware, por lo que un error en los mismos puede llegar a producir una multiplicación no deseada de sus efectos nocivos.Actualmente el mayor esfuerzo en el análisis de programas probabilísticos se lleva a cabo en el estudio y desarrollo de herramientas denominadas chequeadores de modelos probabilísticos. Las mismas, dado un modelo finito del sistema estocástico, obtienen de forma automática varias medidas de performance del mismo. Aunque esto puede ser bastante útil a la hora de verificar programas, para sistemas de uso general se hace necesario poder chequear especificaciones más completas que hacen a la corrección del algoritmo. Incluso sería interesante poder obtener automáticamente las propiedades del sistema, en forma de invariantes y contraejemplos.En este proyecto se pretende abordar el problema de análisis estático de programas probabilísticos mediante el uso de herramientas deductivas como probadores de teoremas y SMT solvers. Las mismas han mostrado su madurez y eficacia en atacar problemas de la programación tradicional. Con el fin de no perder automaticidad en los métodos, trabajaremos dentro del marco de "Interpretación Abstracta" el cual nos brinda un delineamiento para nuestro desarrollo teórico. Al mismo tiempo pondremos en práctica estos fundamentos mediante implementaciones concretas que utilicen aquellas herramientas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cada cop més s’utilitzen robots en molts àmbits de la vida, els quals han de ser programats, i el fet que Microsoft s’impliqui aportant una eina de programació resulta interessant. Aprendre a programar robots i colònies de robots amb aquesta eina, la qual està tenint una bona acollida, és molt important, per això en aquest projecte s’ha fet una anàlisi crítica de MRS i del material docent associat a l’aplicació. Els resultats i conclusions obtinguts han estat, d’una banda, que és la millor eina de programació de robots, en termes generals, i d’altra, una guia iniciativa a l’entorn MRS, accessible a la direcció: http://shades.uab.cat/MSRS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims at providing a Bayesian parametric framework to tackle the accessibility problem across space in urban theory. Adopting continuous variables in a probabilistic setting we are able to associate with the distribution density to the Kendall's tau index and replicate the general issues related to the role of proximity in a more general context. In addition, by referring to the Beta and Gamma distribution, we are able to introduce a differentiation feature in each spatial unit without incurring in any a-priori definition of territorial units. We are also providing an empirical application of our theoretical setting to study the density distribution of the population across Massachusetts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuing developments in science and technology mean that the amounts of information forensic scientists are able to provide for criminal investigations is ever increasing. The commensurate increase in complexity creates difficulties for scientists and lawyers with regard to evaluation and interpretation, notably with respect to issues of inference and decision. Probability theory, implemented through graphical methods, and specifically Bayesian networks, provides powerful methods to deal with this complexity. Extensions of these methods to elements of decision theory provide further support and assistance to the judicial system. Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science provides a unique and comprehensive introduction to the use of Bayesian decision networks for the evaluation and interpretation of scientific findings in forensic science, and for the support of decision-makers in their scientific and legal tasks. Includes self-contained introductions to probability and decision theory. Develops the characteristics of Bayesian networks, object-oriented Bayesian networks and their extension to decision models. Features implementation of the methodology with reference to commercial and academically available software. Presents standard networks and their extensions that can be easily implemented and that can assist in the reader's own analysis of real cases. Provides a technique for structuring problems and organizing data based on methods and principles of scientific reasoning. Contains a method for the construction of coherent and defensible arguments for the analysis and evaluation of scientific findings and for decisions based on them. Is written in a lucid style, suitable for forensic scientists and lawyers with minimal mathematical background. Includes a foreword by Ian Evett. The clear and accessible style of this second edition makes this book ideal for all forensic scientists, applied statisticians and graduate students wishing to evaluate forensic findings from the perspective of probability and decision analysis. It will also appeal to lawyers and other scientists and professionals interested in the evaluation and interpretation of forensic findings, including decision making based on scientific information.