918 resultados para Preparation of inoculum
Resumo:
Preparation of (S)-1-chloro-2-octanol and (S)-1-bromo-2-octanol was carried out by the enzymatic hydrolysis of halohydrin palmitates using biocatalysts. Halohydrin palmitates were prepared by various methods from palmitic acid and 1,2-octanediol. A tandem hydrolysis was carried out using lipases from Candida antarctica (Novozym® 435), Rhizomucor miehei (Lipozyme IM), and “resting cells” from a Rhizopus oryzae strain that was not mycotoxigenic. The influence of the enzyme and the reaction medium on the selective hydrolysis of isomeric mixtures of halohydrin esters is described. Novozym® 435 allowed preparation of (S)-1-chloro-2-octanol and (S)-1-bromo-2-octanol after 1–3 h ofreaction at 40 °C in [BMIM][PF6].
Resumo:
A simple, efficient protocol for the preparation of α-labeled aldehydes based on H/D exchange catalyzed by 4-(N,N-dimethylamino)pyridine or Et3N is described. High chemical yields and ratios of isotope incorporation were obtained even when small amounts (1 mmol) of aldehyde were used.
Resumo:
A simple, efficient protocol for the preparation of α-labeled aldehydes based on H/D exchange catalyzed by 4-(N,N-dimethylamino)pyridine or Et3N is described. High chemical yields and ratios of isotope incorporation were obtained even when small amounts (1 mmol) of aldehyde were used.
Resumo:
An unprecedented NH2-directed Pd(II)-catalytic carbonylation of quaternary aromatic α -amino esters to yield 6-membered 10 benzolactams has been developed. The reaction shows a strong bias to 6-membered lactams over 5-membered ones. The steric hindrance around the amino group seems to be pivotal for the success of the process.
Resumo:
Bloodstream infections and sepsis are a major cause of morbidity and mortality. The successful outcome of patients suffering from bacteremia depends on a rapid identification of the infectious agent to guide optimal antibiotic treatment. The analysis of Gram stains from positive blood culture can be rapidly conducted and already significantly impact the antibiotic regimen. However, the accurate identification of the infectious agent is still required to establish the optimal targeted treatment. We present here a simple and fast bacterial pellet preparation from a positive blood culture that can be used as a sample for several essential downstream applications such as identification by MALDI-TOF MS, antibiotic susceptibility testing (AST) by disc diffusion assay or automated AST systems and by automated PCR-based diagnostic testing. The performance of these different identification and AST systems applied directly on the blood culture bacterial pellets is very similar to the performance normally obtained from isolated colonies grown on agar plates. Compared to conventional approaches, the rapid acquisition of a bacterial pellet significantly reduces the time to report both identification and AST. Thus, following blood culture positivity, identification by MALDI-TOF can be reported within less than 1 hr whereas results of AST by automated AST systems or disc diffusion assays within 8 to 18 hr, respectively. Similarly, the results of a rapid PCR-based assay can be communicated to the clinicians less than 2 hr following the report of a bacteremia. Together, these results demonstrate that the rapid preparation of a blood culture bacterial pellet has a significant impact on the identification and AST turnaround time and thus on the successful outcome of patients suffering from bloodstream infections.
Resumo:
Herein is described the synthesis of several analogs of the natural product IB-01211 from concatenated azoles, via a biomimetic pathway based on cyclization-oxidation of serine containing peptides combined with the Hantzsch synthesis. The macrocyclization of rigid peptide compounds 1 and 2 to give IB-01211 and its epimer 12b was explored, and the results are compared here to those previously obtained for the macrocyclization of more flexible structures in the syntheses of YM-216391, telomestatin, and IB-01211. Lastly, the preliminary results of anti-tumor activity screening of the synthesized analogs are discussed.
Resumo:
The preparation of 2', 3'-di-O-hexanoyluridine (2) by a Candida antarctica B lipase-catalysed alcoholysis of 2', 3', 5'-tri-O-hexanoyluridine (1) was optimised using an experimental design. At 25 ºC better experimental conditions allowed an increase in the yield of 2 from 80% to 96%. In addition to the yield improvement, the volume reaction could be diminished in a factor of 5 and the reaction time significantly shortened.
Resumo:
As it is known, a huge part of all commercially available membranes are prepared by immersion precipitation. This way is the primary way to get flat membranes. The advantages of immersion precipitation are: wide field of the polymers, which can be used (polymer must be soluble in a solvent or a solvent mixture) and ease of performing. The literature part of this work deals with phase inversion membrane preparation methods and casting parameters affecting membrane performance. Also some membrane types and materials are discussed. In the experimental part of this work 73 membrane samples were made with different casting parameters (polymer concentration in the casting solution and precipitation time) and tested for the retention and permeability. The results of these experiments are collected and combined into the figures and tables which are presented in this thesis. This work showed and confirmed connection between membrane performance and casting parameters (concentration of polymer in the casting solution and precipitation time).
Resumo:
Hydrogels micro, sub-micro and nanoparticles are of great interest for drug encapsulation and delivery or as embolotherapic agents. In this work it is described the preparation of nano and sub-microparticles of pre-formed, high molecular weight and monomer free poly(N-vinyl-2-pyrrolidone) encapsulated inside the core of lecithin vesicles. The hydrogel particles are formed with a very narrow diameter distribution, of about 800 nm, and a moderate swelling ratio, of approximately 10.
Resumo:
Silver containing heavy metal oxide glasses and glass ceramics of the system WO3-SbPO4-PbO-AgCl with different AgCl contents have been prepared and their thermal, structural and optical properties characterized. Glass ceramics containing metallic silver nanoparticles have been prepared by annealing glass samples at temperatures above the glass transition and analyzed by transmission electron microscopy and energy dispersive X-ray microanalysis. The presence of the metallic clusters has been also confirmed by the observation of a surface plasmon resonance band in the visible range. Cyclic voltammetric measurements indicated the presence of metallic silver into the glasses, even before to perform the thermal treatment.
Resumo:
Inclusion compound of rhodium(II) citrate with β-cyclodextrin in a 1:1 molar ratio was prepared using freeze-drying method. X-ray diffactometry, thermal analysis (TG/DTG/DSC), infrared and ¹H-NMR with ¹H spin lattice relaxation (¹H T1) measurements and 13C techniques were used to characterize the system prepared. The results indicated the formation of inclusion or association compounds between rhodium(II) citrate and β-cyclodextrin.
Resumo:
The effect of calcination conditions on the size and killing activity of CaO nanoparticles towards L. plantarum was studied in this paper. The results showed that CaO nanoparticles with a diameter of 20 nm could be obtained under the investigated conditions. The lethal effect of CaO nanoparticles after incubation of 6 or 24 h increased with increasing calcination time. Using CaO-SA, CaO-SB, and CaO-SC after a 24-h exposure, 2.25, 3.37, and 5.97 log L. plantarum were killed, respectively, at a concentration of 100 ppm. The current results show that the use of CaO nanoparticles as antibacterial agents has significant potential in food-relevant industries.
Resumo:
In this work, we report the Biginelli-type reaction between various aldehydes, acetophenones and urea systems in the presence of sulfonic acid functionalized silica (SBA-Pr-SO3H) under solvent-free conditions, which led to 4,6-diarylpyrimidin-2(1H)-ones derivatives. SBA-Pr-SO3H with a pore size of 6 nm was found to be an efficient heterogeneous solid acid catalyst for this reaction which led to high product yields, was environmentally benign with short reaction times and easy handling.
Resumo:
In the theory part the membrane emulsification was studied. Emulsions are used in many industrial areas. Traditionally emulsions are prepared by using high shear in rotor-stator systems or in high pressure homogenizer systems. In membrane emulsification two immiscible liquids are mixed by pressuring one liquid through the membrane into the other liquid. With this technique energy could be saved, more homogeneous droplets could be formed and the amount of surfactant could be decreased. Ziegler-Natta and single-site catalysts are used in olefin polymerization processes. Nowadays, these catalysts are prepared according to traditional mixing emulsification. More homogeneous catalyst particles that have narrower particle size distribution might be prepared with membrane emulsification. The aim of the experimental part was to examine the possibility to prepare single site polypropylene catalyst using membrane emulsification technique. Different membrane materials and solidification techniques of the emulsion were examined. Also the toluene-PFC phase diagram was successfully measured during this thesis work. This phase diagram was used for process optimization. The polytetrafluoroethylene membranes had the largest contact angles with toluene and also the biggest difference between the contact angles measured with PFC and toluene. Despite of the contact angle measurement results no significant difference was noticed between particles prepared using PTFE membrane or metal sinter. The particle size distributions of catalyst prepared in these tests were quite wide. This would probably be fixed by using a membrane with a more homogeneous pore size distribution. It is also possible that the solidification rate has an effect on the particle sizes and particle morphology. When polymeric membranes are compared PTFE is probably still the best material for the process as it had the best chemical durability.