88 resultados para Polypyrrole


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The search for new materials especially those possessing special properties continues at a great pace because of ever growing demands of the modern life. The focus on the use of intrinsically conductive polymers in organic electronic devices has led to the development of a totally new class of smart materials. Polypyrrole (PPy) is one of the most stable known conducting polymers and also one of the easiest to synthesize. In addition, its high conductivity, good redox reversibility and excellent microwave absorbing characteristics have led to the existence of wide and diversified applications for PPy. However, as any conjugated conducting polymer, PPy lacks processability, flexibility and strength which are essential for industrial requirements. Among various approaches to making tractable materials based on PPy, incorporating PPy within an electrically insulating polymer appears to be a promising method, and this has triggered the development of blends or composites. Conductive elastomeric composites of polypyrrole are important in that they are composite materials suitable for devices where flexibility is an important parameter. Moreover these composites can be moulded into complex shapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt and Pt/Sn catalysts supported on polypyrrole (PPy) have been prepared using Ar plasma to reduce the metal precursors dispersed on the polymer. The PPy support was synthesized by chemical polymerization of pyrrole with FeCl3·6H2O, this leading to the conducting form of the polymer (conductimetric measurements). The Ar plasma treatment produced a partial reduction of platinum ions, anchored as platinum chloro-complexes to the PPy chain, into metallic platinum. A homogeneous distribution of Pt and Sn nanoparticles was observed by TEM. Activity of the PPy-supported catalysts was evaluated in the reduction of aqueous nitrate with H2 at room temperature. Nitrate concentration in water below the maximum acceptable level of 50 mg L−1 was achieved with all catalysts. However, considering not only efficiency in nitrate reduction, but also minimized concentrations of undesired nitrite and ammonium, the monometallic Pt catalyst seems to be the most promising one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the infrared spectroscopy characterization and the charge compensation dynamics in supramolecular film FeTPPZFeCN derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) with hexacyanoferrate, as well as the hybrid film formed by FeTPPZFeCN and polypyrrole (PPy). For supramolecular film, it was found that anion flux is greater in a K+ containing solution than in Li+ solution, which seems to be due to the larger crystalline ionic radius of K+. The electroneutralization process is discussed in terms of electrostatic interactions between cations and metallic centers in the hosting matrix. The nature of the charge compensation process differs from others modified electrodes based on Prussian blue films, where only cations such as K+ participate in the electroneutralization process. In the case of FeTPPZFeCN/PPy hybrid film, the magnitude of the anions’s flux is also dependent on the identity of the anion of the supporting electrolyte.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blends formed by electrochemical polymerization of polypyrrole (PPy) into polyacrylamide (PAAm) hydrogels were used as devices for controlled drug release. The influence of several parameters in the synthesis, such as type of hydrogel matrix and polymerization conditions was studied by using a fractional factorial design. The final goal was to obtain an adequate device for use in controlled release tests, based on electrochemical potential control. For controlled release tests, Safranin was used as model drug and release curves (amount of drug vs. time) have shown that these blends are promising materials for this use. The optimized blends obtained were characterized by cyclic voltammetry and Raman spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prussian Blue has been introduced as a mediator to achieve stable, sensitive, reproducible, and interference-free biosensors. However, Na(+), Li(+), H(+), and all group II cations are capable to block the activity of Prussian Blue and, because Na(+) can be found in most human fluids, Prussian Blue analogs have already been developed to overcome this problem. These analogs, such as copper hexacyanoferrate, have also been introduced in a conducting polypyrrole matrix to create hybrid materials (copper hexacyanoferrate/polypyrrole, CuHCNFe/Ppy) with improved mechanical and electrochemical characteristics. Nowadays, the challenges in amperometric enzymatic biosensors consist of improving the enzyme immobilization and in making the chemical signal transduction more efficient. The incorporation of nanostructured materials in biosensors can optimize both steps and a nanostructured hybrid CuHCNFe/Ppy mediator has been developed using a template of colloidal polystyrene particles. The nanostructured material has achieved sensitivities 7.6 times higher than the bulk film during H(2)O(2) detection and it has also presented better results in other analytical parameters such as time response and detection limit. Besides, the nanostructured mediator was successfully applied at glucose biosensing in electrolytes containing Prussian Blue blocking cations. (C) 2008 The Electrochemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(pyrrole) (PPY) coating was prepared on a stainless-steel (SS) wire for solid-phase microextraction (SPME) by electrochemical deposition (cyclic voltammetric). The PPY was evaluated by analyzing new-generation antidepressants (mirtazapine, citalopram, paroxetine, duloxetine, fluoxetine, and sertraline) in plasma sample by SPME and liquid chromatography with UV detection (LC-UV). The effect of electrolyte Solution (lithium perchlorate or tetrabutylammonium perchlorate) and the number of cycles (50, 100 or 200) applied during the polymerization process on the SPME performance was evaluated. Important factors in the optimization of SPME efficiency such as extraction time, temperature, pH, influence of plasma proteins on sorption mechanisms, and desorption conditions are discussed. The SPME-PPY/LC method showed to be linear in concentrations ranging from the limit of quantification (LOQ) to 1200 ng mL(-1). The LOQ values range from 16 to 25 ng mL-1. The inter-day precision of the SPME-PPY/LC method presented coefficient of variation (CV) lower than 15%. Based on analytical validation results, the SPME-PPY/LC methodology showed to be adequate for antidepressant analysis, from therapeutic to toxic levels. In order to evaluate the proposed method for clinical use, the SPME-PPY/LC method was applied to the analysis of plasma samples from elderly depressed patients. (c) 2009 Elsevier B.V. All rights reserved,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two polymer-montmorillonite (MMT) nanocomposites have been synthesized by in situ intercalative polymerization. The styrene monomer is intercalated into the interlayer space of organically modified MMT, a layered clay mineral. Upon the intercalation, the complex is subsequently polymerized in the confinement environment of the interlayer space with a free radical initiator, 2,2-azobis isobutyronitrile. The aniline monomer is also intercalated and then polymerized within the interlayer space of sodium- and copper-MMT initiated by ammonium peroxodisulphate and interlayer copper cations respectively. X-ray diffraction indicates that the MMT layers are completely dispersed in the polystyrene matrix and an exfoliated structure has been obtained. The resulting polyaniline-MMT nanocomposites show a highly ordered structure of a single polyaniline layer stacked with the MMT layers. Fourier transform infrared spectra further confirm the intercalation and formation of both polymer-MMT nanocomposites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel electrochemical sensor for ochratoxin A (OTA) detection was fabricated through the modification of a glassy carbon electrode (GCE) with multiwalled carbon nanotubes (MWCNTs) and a molecularly imprinted polymer (MIP). The MWCNTs dramatically promoted the sensitivity of the developed sensor, while polypyrrole (PPy) imprinted with OTA served as the selective recognition element. The imprinted PPy film was prepared by electropolymerization of pyrrole in the presence of OTA as a template molecule via cyclic voltammetry (CV). The electrochemical oxidation of OTA at the developed sensor was investigated by CV and differential pulse voltammetry (DPV). The developed MIP/MWCNT/GCE sensor showed a linear relationship, when using DPV, between peak current intensity and OTA concentration in the range between 0.050 and 1.0 μM, with limits of detection (LOD) and quantification of 0.0041 μM (1.7 μg/L) and 0.014 μM (5.7 μg/L) respectively. With the developed sensor precise results were obtained; relative standard deviations of 4.2% and 7.5% in the evaluation of the repeatability and reproducibility, respectively. The MIP/MWCNT/GCE sensor is simple to fabricate and easy to use and was successfully applied to the determination of OTA in spiked beer and wine samples, with recoveries between 84 and 104%, without the need of a sample pre-treatment step.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação para a Ciência e a Tecnologia (FCT-MCTES) under the grant SFRH/BD/69306/2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Exert] Since the discovery that polyacetylene could be doped to the metallic state more than 3 decades ago, an ever-growing body of a multidisciplinary approach to material design, synthesis, and system integration has been evidenced. The present chapter will primarily review the emerging field of intrinsically conducting polymer and conductive polymer blends, with polyaniline and polypyrrole as the major representatives of conducting polymers. This survey will also address some of the potential areas for applications of such conductive polymer blends. Also, current results concerning the chemical polymerization of conducting polymers on bacterial nanocellulose (BNC) will be presented, including brief remarks on the rationale for the use of conductive BNC blends. This will be followed by a discussion on their properties and potential applications (...).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Restricted Hartree-Fock 6-31G calculations of electrical and mechanical anharmonicity contributions to the longitudinal vibrational second hyperpolarizability have been carried out for eight homologous series of conjugated oligomers - polyacetylene, polyyne, polydiacetylene, polybutatriene, polycumulene, polysilane, polymethineimine, and polypyrrole. To draw conclusions about the limiting infinite polymer behavior, chains containing up to 12 heavy atoms along the conjugated backbone were considered. In general, the vibrational hyperpolarizabilities are substantial in comparison with their static electronic counterparts for the dc-Kerr and degenerate four-wave mixing processes (as well as for static fields) but not for electric field-induced second harmonic generation or third harmonic generation. Anharmonicity terms due to nuclear relaxation are important for the dc-Kerr effect (and for the static hyperpolarizability) in the σ-conjugated polymer, polysilane, as well as the nonplanar π systems polymethineimine and polypyrrole. Restricting polypyrrole to be planar, as it is in the crystal phase, causes these anharmonic terms to become negligible. When the same restriction is applied to polymethineimine the effect is reduced but remains quantitatively significant due to the first-order contribution. We conclude that anharmonicity associated with nuclear relaxation can be ignored, for semiquantitative purposes, in planar π-conjugated polymers. The role of zero-point vibrational averaging remains to be evaluated

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review is given about the most relevant advances on the analytical applications of conducting polymers in potentiometric sensors. These organic polymers represent a new class of materials with conducting properties due to its doping by ions. Several polymers already were synthesized such as polypyrrole, polyaniline, polythiophene, among others. Particular attention is devoted to the main advantages supplied by ion selective electrodes and gas sensors using conducting polymers, as well as the incorporation of bioactive elements in these polymers for the construction of biosensors. The correlation between structure, stability and ability to ion exchange of some conducting polymers applied as potentiometric transducers, is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of acidity on the synthesis and redox behavior of polypyrrole films was studied using galvanostatic and potentiodynamic techniques employing aqueous solutions formed by H2SO4/Na2SO4 , HCl/NaCl and HCl/CsCl. The chemical structure of the films were investigated using the FTIR technique. The polymer behavior as a function of the pH used in the cyclic voltammetric measurements is explained in terms of the mechanism responsible for the charge compensation formed during the polymer chain oxidation. From the FTIR measurements, it is seen that the water nucleophilic attack during the synthesis, does not occur under the experimental conditions employed in this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron stimulated ion desorption (ESID) and degradation studies of polypyrrole doped with dodecylsulfate (PPy/DS) deposited on FTO were performed using time-of-flight mass spectrometry (TOF-MS) for ion analysis. The results suggest a strong contribution from fragments of the dodecylsulfate hydrocarbon chain to the mass spectra. In the 650-1500 eV energy range the ion yield curves show maxima at about 600, 1200 and 1400 eV, which can be related to carbon, nitrogen and oxygen-containing fragments, respectively, and interpreted in terms of the Auger Stimulated Ion Desorption (ASID) mechanism. Degradation studies indicate rapid loss of heavier hydrocarbons and an increase of bulk and substrate fragments. Some degradation profiles suggest formation of new species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the analytical application of a novel electronic tongue based on voltammetric sensors array. This device was used in the classification of wines aged in barrels of different origins and toasting levels. Furthermore, a study of correlation between the response of the electronic tongue and the sensory and chemical characterization of samples was carried out. The results were evaluated by applying both principal component analysis and cluster analysis. The samples were clearly classified. Their distribution showed a high correspondence degree with the characteristics of the analyzed wines, it also showed similarity with the classification obtained from organoleptic analysis.