986 resultados para Polymer-solutions
Resumo:
Measuring the retention, or residence time, of dosage forms to biological tissue is commonly a qualitative measurement, where no real values to describe the retention can be recorded. The result of this is an assessment that is dependent upon a user's interpretation of visual observation. This research paper outlines the development of a methodology to quantitatively measure, both by image analysis and by spectrophotometric techniques, the retention of material to biological tissues, using the retention of polymer solutions to ocular tissue as an example. Both methods have been shown to be repeatable, with the spectrophotometric measurement generating data reliably and quickly for further analysis.
Resumo:
Amostras de borracha natural foram reticuladas por meio de radiação gama (doses de 2, 4, 6 e 8 MRad) e intumescidas: a) em n-octano, ciclo-hexano e esqualeno; b) em polibutadieno líquido (Mn=1830 g/mol; alto teor 1,4- cis) a 45°C; C) em solução de polibutadieno de baixo peso molecular (M,= 1830 g/mol; alto teor 1,4-cis) em n-octano e ciclo-hexano; d) em solução de polibutadieno de alto peso molecular (Mn= 175.000 g/rnol; alto teor 1,4-cis) emn-octano e ciclo-hexano ; e) em solução de borracha natural (Mn=779.000 g/mol) em ciclo- hexano, a 25°C. Amostras de polibutadieno (alto teor 1,4-cis) foram reticuladas por meio de radiação gama (doses de 1,s; 18 e 25 MRad) e intumescidas: a) em n-octano, ciclo-hexano e esquaieno. Salvo quando mencionado em contrário, as amostras de borracha natural e de polibutadieno foram intumescidas nas temperaturas de 25, 35 e 45°C. A partir dos ensaios de intumescirnento acima mencionados, foram determinadas as solubilidades de borracha natural e de polibutadieno em n-octano, ciclo-hexano e esqualeno através dos parâmetros de Flory-Huggins, calculados com o emprego da equação de Flory-Rehner. Verificou-se a influência da temperatura e da concentração de polimero no gel sobre o valor do parâmetro de Flory-Huggins. Também através desse parâmetro procurou-se determinar a compatibilidade entre borracha natural e polibutadieno. Foi demonstrado que cadeias lineares de baixo peso molecular de polibutadieno conseguem penetrar em amostras reticuladas de borracha natural, quando o peso molecular das cadeias lineares for bem inferior ao do arco de rede Mc das amostras reticuladas. Cadeias lineares de polibutadieno e de borracha natural com peso molecular superior ao do arco de rede da borracha natural reticulada, entretanto, não conseguem penetrar no retículo. Quranto mais alta a concentração da solução externa em moléculas de alto peso molecular, tanto menor é o grau de intumescimento da amostra reticulada.
Resumo:
Colon-specific drug delivery systems have attracted increasing attention from the pharmaceutical industry due to their ability of treating intestinal bowel diseases (IBD), which represent a public health problem in several countries. In spite of being considered a quite effective molecule for the treatment of IBD, mesalazine (5-ASA) is rapidly absorbed in the upper gastrointestinal tract and its systemic absorption leads to risks of adverse effects. The aim of this work was to develop a microparticulate system based on xylan and Eudragit® S- 100 (ES100) for colon-specific delivery of 5-ASA and evaluate the interaction between the polymers present in the systems. Additionaly, the physicochemical and rheological properties of xylan were also evaluated. Initially, xylan was extracted from corn cobs and characterized regarding the yield and rheological properties. Afterwards, 10 formulations were prepared in different xylan and ES100 weight ratios by spray-drying the polymer solutions in 0.6N NaOH and phosphate buffer pH 7.4. In addition, 3 formulations consisting of xylan microcapsules were produced by interfacial cross-linking polymerization and coated by ES100 by means of spray-drying in different polymer weight ratios of xylan and ES100. The microparticles were characterized regarding yield, morphology, homogeneity, visual aspect, crystallinity and thermal behavior. The polymer interaction was investigated by infrared spectroscopy. The extracted xylan was presented as a very fine and yellowish powder, with mean particle size smaller than 40μm. Regarding the rheological properties of xylan, they demonstrated that this polymer has a poor flow, low density and high cohesiveness. The microparticles obtained were shown to be spherical and aggregates could not be observed. They were found to present amorphous structure and have a very high thermal stability. The yield varied according to the polymer ratios. Moreover, it was confirmed that the interaction between xylan and ES100 occurs only by means of physical aggregation
Resumo:
The synthesis of a poly(azo)urethane by fixing CO2 in bis-epoxide followed by a polymerization reaction with an azodiamine is presented. Since isocyanate is not used in the process, it is termed clean method and the polymers obtained are named NIPUs (non-isocyanate polyurethanes). Langmuir films were formed at the air-water interface and were characterized by surface pressure vs mean molecular area per met unit (Pi-A) isotherms. The Langmuir monolayers were further studied by running stability tests and cycles of compression/expansion (possible hysteresis) and by varying the compression speed of the monolayer formation, the subphase temperature, and the solvents used to prepare the spreading polymer solutions. The Langmuir-Blodgett (LB) technique was used to fabricate ultrathin films of a particular polymer (PAzoU). It is possible to grow homogeneous LB films of up to 15 layers as monitored using UV-vis absorption spectroscopy. Higher number of layers can be deposited when PAzoU is mixed with stearic acid, producing mixed LB films. Fourier transform infrared (FTIR) absorption spectroscopy and Raman scattering showed that the materials do not interact chemically in the mixed LB films. The atomic force microscopy (AFM) and micro-Raman technique (optical microscopy coupled to Raman spectrograph) revealed that mixed LB films present a phase separation distinguishable at micrometer or nanometer scale. Finally, mixed and neat LB films were successfully characterized using impedance spectroscopy at different temperatures, a property that may lead to future application as temperature sensors. Principal component analysis (PCA) was used to correlate the data.
Resumo:
The development of products whose purpose is to promote blockages in high permeability zones as well as to control the hydrate or scale formation also needs some tests in porous media before using the product in the field, where attempts and unavoidable operational errors costs would able to derail any projects. The aim of this study was to analyze and compare the Botucatu and Berea sandstones properties, involving problems related to loss permeability. It was observed that even cores of Berea, without expansible clays in their composition had their permeability reduced, as soon as the salinity of brine reached a lower limit. As expected, the same happened with the Botucatu sandstone samples, however, in this case, the sensitivity to low salinity was more pronounced. In a second phase, the research was focused on the Botucatu Sandstone behavior front of dilute polymer solutions injection, checking the main relationships between the Rock / Fluid interactions, considering the Mobility Reduction, Resistance and Residual Resistance Factors, as well as adsorption/desorption processes of these polymers, and the polymer molecules average size and porous sandstone average size ratio. The results for both phases showed a real feasibility of using the Botucatu sandstone in laboratory tests whose objective is the displacement of fluids through porous media
Resumo:
Chitosan is a biopolymer derived from the shells of crustaceans, biodegradable, inexpensive and renewable with important physical and chemical properties. Moreover, the different modifications possible in its chemical structure generate new properties, making it an attractive polysaccharide owing to its range of potential applications. Polymers have been used in oil production operations. However, growing concern over environmental constraints has prompted oil industry to search for environmentally sustainable materials. As such, this study sought to obtain chitosan derivatives grafted with hydrophilic (poly(ethylene glycol), mPEG) and/or hydrophobic groups (n-dodecyl) via a simple (one-pot) method and evaluate their physicochemical properties as a function of varying pH using rheology, small-angle Xray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. The chitosan derivatives were prepared using reductive alkylation under mild reaction conditions and the chemical structure of the polymers was characterized by nuclear magnetic resonance (1H NMR) and CHN elemental analysis. Considering a constant mPEG/Chitosan molar ratio on modification of chitosan, the solubility of the polymer across a wide pH range (acidic, neutral and basic) could only be improved when some of the amino groups were submitted to reacetylation using the one-pot method. Under these conditions, solubility is maintained even with the simultaneous insertion of n-dodecyl. On the other hand, the solubility of derivatives obtained only through mPEG incorporation using the traditional methodology, or with the ndodecyl group, was similar to that of its precursor. The hydrophilic group promoted decreased viscosity of the polymer solutions at 10 g/L in acid medium. However, at basic pH, both viscosity and thermal stability increased, as well as exhibited a pronounced pseudoplastic behavior, suggesting strong intermolecular associations in the alkaline medium. The SAXS results showed a polyelectrolyte behavior with the decrease in pH for the polymer systems. DLS analyses revealed that although the dilute polymer solutions at 1 g/L and pH 3 exhibited a high density of protonated amino groups along the polymer chain, the high degree of charge contributed significantly to aggregation, promoting increased particle size with the decrease in pH. Furthermore, the hydrophobic group also contributed to increasing the size of aggregates in solution at pH 3, whereas the hydrophilic group helped reduce their size across the entire pH range. Nevertheless, the nature of aggregation was dependent on the pH of the medium. Zeta potential results indicated that its values do not depend solely on the surface charge of the particle, but are also dependent on the net charge of the medium. In this study, water soluble associative polymers exhibit properties that can be of great interest in the petroleum industry
Resumo:
Sustainable development is a major challenge in the oil industry and has aroused growing interest in research to obtain materials from renewable sources. Carboxymethylcellulose (CMC) is a polysaccharide derived from cellulose and becomes attractive because it is water-soluble, renewable, biodegradable and inexpensive, as well as may be chemically modified to gain new properties. Among the derivatives of carboxymethylcellulose, systems have been developed to induce stimuli-responsive properties and extend the applicability of multiple-responsive materials. Although these new materials have been the subject of study, understanding of their physicochemical properties, such as viscosity, solubility and particle size as a function of pH and temperature, is still very limited. This study describes systems of physical blends and copolymers based on carboxymethylcellulose and poly (N-isopropylacrylamide) (PNIPAM), with different feed percentage compositions of the reaction (25CMC, 50CMC e 75CMC), in aqueous solution. The chemical structure of the polymers was investigated by infrared and CHN elementary analysis. The physical blends were analyzed by rheology and the copolymers by UV-visible spectroscopy, small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. CMC and copolymer were assessed as scale inhibitors of calcium carbonate (CaCO3) using dynamic tube blocking tests and chemical compatibility tests, as well as scanning electron microscopy (SEM). Thermothickening behavior was observed for the 50 % CMC_50 % PNIPAM and 25 % CMC_75 % PNIPAM physical blends in aqueous solution at concentrations of 6 and 2 g/L, respectively, depending on polymer concentration and composition. For the copolymers, the increase in temperature and amount of PNIPAM favored polymer-polymer interactions through hydrophobic groups, resulting in increased turbidity of polymer solutions. Particle size decreased with the rise in copolymer PNIPAM content as a function of pH (3-12), at 25 °C. Larger amounts of CMC result in a stronger effect of pH on particle size, indicating pH-responsive behavior. Thus, 25CMC was not affected by the change in pH, exhibiting similar behavior to PNIPAM. In addition, the presence of acidic or basic additives influenced particle size, which was smaller in the presence of the additives than in distilled water. The results of zeta potential also showed greater variation for polymers in distilled water than in the presence of acids and bases. The lower critical solution temperature (LCST) of PNIPAM determined by DLS corroborated the value obtained by UV-visible spectroscopy. SAXS data for PNIPAM and 50CMC indicated phase transition when the temperature increased from 32 to 34 °C. A reduction in or absence of electrostatic properties was observed as a function of increased PNIPAM in copolymer composition. Assessment of samples as scale inhibitors showed that CMC performed better than the copolymers. This was attributed to the higher charge density present in CMC. The SEM micrographs confirmed morphological changes in the CaCO3 crystals, demonstrating the scale inhibiting potential of these polymers
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A low-Reynolds-number k-ω model for Newtonian fluids has been developed to predict drag reduction of viscoelastic fluids described by the FENE-P model. The model is an extension to viscoelastic fluids of the model for Newtonian fluids developed by Bredberg et al. (Int J Heat Fluid Flow 23:731-743, 2002). The performance of the model was assessed using results from direct numerical simulations for fully developed turbulent channel flow of FENE-P fluids. It should only be used for drag reductions of up to 50 % (low and intermediate drag reductions), because of the limiting assumption of turbulence isotropy leading to an under-prediction of k, but compares favourably with results from k-ε models in the literature based on turbulence isotropy. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
A second-order closure is developed for predicting turbulent flows of viscoelastic fluids described by a modified generalised Newtonian fluid model incorporating a nonlinear viscosity that depends on a strain-hardening Trouton ratio as a means to handle some of the effects of viscoelasticity upon turbulent flows. Its performance is assessed by comparing its predictions for fully developed turbulent pipe flow with experimental data for four different dilute polymeric solutions and also with two sets of direct numerical simulation data for fluids theoretically described by the finitely extensible nonlinear elastic - Peterlin model. The model is based on a Newtonian Reynolds stress closure to predict Newtonian fluid flows, which incorporates low Reynolds number damping functions to properly deal with wall effects and to provide the capability to handle fluid viscoelasticity more effectively. This new turbulence model was able to capture well the drag reduction of various viscoelastic fluids over a wide range of Reynolds numbers and performed better than previously developed models for the same type of constitutive equation, even if the streamwise and wall-normal turbulence intensities were underpredicted.
Resumo:
The effect of gamma radiation on poly{[2,5-bis(3-(N,N-diethylamino)-1-oxapropyl)-1,4-phenylene]-alt-1,4- phenylene} (PPP); poly{[2,5-bis(3-(N,N-diethylammonium bromide)-1-oxapropyl)-1,4-phenylene]-alt-1,4-phenylene} (PPP-Br); and the polymerized dye poly-1-ethyl-2-[3-(1-ethyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)-1-propenyl]- 3,3-dimethyl-3H-indolium perchlorate (Poly-CyC) has been investigated. The stability and response of poly [2-methoxy- 5-(2'- ethyl-hexyloxy)-p-phenylenevinylene] (MEH-PPV) in mixed solutions have also been explored. To this end, samples with concentrations ranging from 0.005 to 0.500 mg/mL were irradiated with a 60Co gamma-ray source at room temperature, using doses up to 1 kGy, and the response was analyzed by UV-Vis spectroscopy. The obtained results reinforce the previously proposed mechanism and suggest that the effect depends on specific structural characteristics of the main chain of the polymers. Moreover, the polymerized dyes display interesting dosimetric properties. Additionally, it has been noted that, contrary to what happens in other solvents, MEH-PPV is degraded in bromoform solution. Protective effects have also been observed for bromoform+toluene mixtures (1:1 vol/vol) and solutions containing molecular dyes. - See more at: http://www.eurekaselect.com/117251/article#sthash.gHFnYvJk.dpuf
Resumo:
In the present study the effect of relative humidity (RH) during spin-coating process on the structural characteristics of cellulose acetate (CA), cellulose acetate phthalate (C-A-P), cellulose acetate butyrate (CAB) and carboxymethyl cellulose acetate butyrate (CMCAB) films was investigated by means of atomic force microscopy (AFM), ellipsometry and contact angle measurements. All polymer solutions were prepared in tetrahydrofuran (THF), which is a good solvent for all cellulose esters, and used for spin-coating at RH of (35 +/- A 5)%, (55 +/- A 5)% or (75 +/- A 5)%. The structural features were correlated with the molecular characteristics of each cellulose ester and with the balance between surface energies of water and THF and interface energy between water and THF. CA, CAB, CMCAB and C-A-P films spin-coated at RH of (55 +/- A 5)% were exposed to THF vapor during 3, 6, 9, 60 and 720 min. The structural changes on the cellulose esters films due to THF vapor exposition were monitored by means of AFM and ellipsometry. THF vapor enabled the mobility of cellulose esters chains, causing considerable changes in the film morphology. In the case of CA films, which are thermodynamically unstable, dewetting was observed after 6 min exposure to THF vapor. On the other hand, porous structures observed for C-A-P, CAB and CMCAB turned smooth and homogeneous after only 3 min exposure to THF vapor.
Resumo:
Microchip electrophoresis has become a powerful tool for DNA separation, offering all of the advantages typically associated with miniaturized techniques: high speed, high resolution, ease of automation, and great versatility for both routine and research applications. Various substrate materials have been used to produce microchips for DNA separations, including conventional (glass, silicon, and quartz) and alternative (polymers) platforms. In this study, we perform DNA separation in a simple and low-cost polyester-toner (PeT)-based electrophoresis microchip. PeT devices were fabricated by a direct-printing process using a 600 dpi-resolution laser printer. DNA separations were performed on PeT chip with channels filled with polymer solutions (0.5% m/v hydroxyethylcellulose or hydroxypropylcellulose) at electric fields ranging from 100 to 300Vcm(-1). Separation of DNA fragments between 100 and 1000 bp, with good correlation of the size of DNA fragments and mobility, was achieved in this system. Although the mobility increased with increasing electric field, separations showed the same profile regardless of the electric field. The system provided good separation efficiency (215 000 plates per m for the 500 bp fragment) and the separation was completed in 4 min for 1000 bp fragment ladder. The cost of a given chip is approximately $0.15 and it takes less than 10 minutes to prepare a single device.
Resumo:
Diese Arbeit legt eine neue Methode zur Simulation derDynamik vonPolymeren in verdünnter und halbverdünnterLösung vor. Die Effizienz der Methode und derAnstieg der Computerleistung in den letzten Jahren erlaubenes, weitaus komplexere Systeme als bisher zu betrachten.Die neue Methode modelliert die Polymere als Kugel-Feder-Ketten, die mittels Molekulardynamik simuliertwerden. Die Flüssigkeit wird durch die numerischeLösung der Kontinuitätsgleichungund der Navier-Stokes-Gleichung mit derLattice-Boltzmann-Methodemodelliert. Die Flüssigkeit wird über eineReibungskraft an die Monomere des Kugel-Feder-Modellsgekoppelt. Die Methode wird auf das Problem einer flexiblen EinzelketteimLösungsmittel angewendet. Der Vergleich derErgebnisse mit einer existierenden reinenMolekulardynamik-Simulationergibt Übereinstimmung innerhalb weniger Prozent,während die neueMethode um etwa einen Faktor 20 weniger CPU-Zeitbenötigt. Eine semiflexible Kette zeigt völliganderes Verhalten: Die Hydrodynamik spielt im Gegensatz zur flexiblen Ketteeineuntergeordnete Rolle. Simulationen von halbverdünntenLösungen flexibler Kettenbestehend aus insgesamt 50000 Monomeren zeigen zum erstenMal direkt dieAbschirmung sowohl der Volumenausschluss-Wechselwirkung alsauch derHydrodynamik.