958 resultados para Plant quality
Resumo:
[EN]This work presents the calibration and validation of an air quality finite element model applied to the surroundings of Jinamar electric power plant in Gran Canaria island (Spain). The model involves the generation of an adaptive tetrahedral mesh, the computation of an ambient wind field, the inclusion of the plume rise effect in the wind field, and the simulation of transport and reaction of pollutants. The main advantage of the model is the treatment of complex terrains that introduces an alternative to the standard implementation of current models. In addition, it improves the computational cost through the use of unstructured meshes...
Resumo:
In this study, we examine the effects of tariff reduction on firms' quality upgrading by employing an Indonesian plant-product-level panel dataset matched with a plant-level dataset. We explore the effects of lower output and input tariffs separately, by focusing on the apparel industry. By estimating the Berry-type demand function, we derive product-quality indicators based on the Khandelwal (Review of Economic Studies, 2010) methodology, which enables us to isolate quality upgrading from changes in prices. Our findings are as follows. First, a reduction in output tariffs does not affect product quality upgrading. Second, a reduction in input tariffs boosts quality upgrading in general. In particular, this impact is greater for import firms, which is consistent with the fact that the source of the boost is the import of high-quality foreign inputs.
Resumo:
Bibliography: p. 19.
Resumo:
Biochar has been heralded a mechanism for carbon sequestration and an ideal amendment for improving soil quality. Melaleuca quinquenervia is an aggressive and wide-spread invasive species in Florida. The purpose of this research was to convert M. quinquenervia biomass into biochar and measure how application at two rates (2% or 5% wt/wt) impacts soil quality, plant growth, and microbial gas flux in a greenhouse experiment using Phaseolus vulgaris L. and local soil. Plant growth was measured using height, biomass weight, specific leaf area, and root-shoot ratio. Soil quality was evaluated according to nutrient content and water holding capacity. Microbial respiration, as carbon dioxide (CO2), was measured using gas chromatography. Biochar addition at 5% significantly reduced available soil nutrients, while 2% biochar application increased almost all nutrients. Plant biomass was highest in the control group, p2 flux decreased significantly in both biochar groups, but reductions were not long term.
Resumo:
We develop a general theoretical framework for exploring the host plant selection behaviour of herbivorous insects. This model can be used to address a number of questions, including the evolution of specialists, generalists, preference hierarchies, and learning. We use our model to: (i) demonstrate the consequences of the extent to which the reproductive success of a foraging female is limited by the rate at which they find host plants (host limitation) or the number of eggs they carry (egg limitation); (ii) emphasize the different consequences of variation in behaviour before and after landing on (locating) a host (termed pre- and post-alighting, respectively); (iii) show that, in contrast to previous predictions, learning can be favoured in post-alighting behaviour--in particular, individuals can be selected to concentrate oviposition on an abundant low-quality host, whilst ignoring a rare higher-quality host; (iv) emphasize the importance of interactions between mechanisms in favouring specialization or learning.
Resumo:
In this study cell wall properties; moisture distribution, stiffness, thickness and cell dimension have been taken into consideration. Cell wall stiffness dependent on complex combination of plant cell microstructures, composition and water holding capacity of the cell. In this work, some preliminary steps taken by investing cell wall properties of apple in order to predict change of porosity and shrinkage during drying. Two different types of apple cell wall characteristic were investigated to correlate with porosity and shrinkage after convective drying. A scanning electron microscope (SEM), 2N Intron, a pyncometer and image J software were used in order to measure and analyze cell characteristics, water dynamics, porosity and shrinkage. Cell stiffness of red delicious apple was found higher than granny smith apples. A significant relationship has found between cell wall characteristics and both heat and mass transfer. Consequently, evolution of porosity and shrinkage noticeably influenced during convective drying by the nature of cell wall. This study has brought better understanding of porosity and shrinkage of dried food stuff in microscopic (cell) level and would provide better insight to attain energy effective drying process and quality food stuff.
Resumo:
Plant based dried food products are popular commodities in global market where much research is focused to improve the products and processing techniques. In this regard, numerical modelling is highly applicable and in this work, a coupled meshfree particle-based two-dimensional (2-D) model was developed to simulate micro-scale deformations of plant cells during drying. Smoothed Particle Hydrodynamics (SPH) was used to model the viscous cell protoplasm (cell fluid) by approximating it to an incompressible Newtonian fluid. The visco-elastic characteristic of the cell wall was approximated to a Neo-Hookean solid material augmented with a viscous term and modelled with a Discrete Element Method (DEM). Compared to a previous work [H. C. P. Karunasena, W. Senadeera, Y. T. Gu and R. J. Brown, Appl. Math. Model., 2014], this study proposes three model improvements: linearly decreasing positive cell turgor pressure during drying, cell wall contraction forces and cell wall drying. The improvements made the model more comparable with experimental findings on dried cell morphology and geometric properties such as cell area, diameter, perimeter, roundness, elongation and compactness. This single cell model could be used as a building block for advanced tissue models which are highly applicable for product and process optimizations in Food Engineering.
Resumo:
The endoplasmic reticulum (ER) is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When perturbed, ER-stress triggers a tightly regulated and highly conserved, signal transduction pathway known as the unfolded protein response (UPR) that prevents the dangerous accumulation of unfolded/misfolded proteins. In situations where excessive UPR activity surpasses threshold levels, cells deteriorate and eventually trigger programmed cell death (PCD) as a way for the organism to cope with dysfunctional or toxic signals. The programmed cell death that results from excessive ER stress in mammalian systems contributes to several important diseases including hypoxia, neurodegeneration, and diabetes. Importantly, hallmark features and markers of cell death that are associated with ER stress in mammals are also found in plants. In particular, there is a common, conserved set of chaperones that modulate ER cell death signaling. Here we review the elements of plant cell death responses to ER stress and note that an increasing number of plant-pathogen interactions are being identified in which the host ER is targeted by plant pathogens to establish compatibility.
Resumo:
Fundamental understanding on microscopic physical changes of plant materials is vital to optimize product quality and processing techniques, particularly in food engineering. Although grid-based numerical modelling can assist in this regard, it becomes quite challenging to overcome the inherited complexities of these biological materials especially when such materials undergo critical processing conditions such as drying, where the cellular structure undergoes extreme deformations. In this context, a meshfree particle based model was developed which is fundamentally capable of handling extreme deformations of plant tissues during drying. The model is built by coupling a particle based meshfree technique: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). Plant cells were initiated as hexagons and aggregated to form a tissue which also accounts for the characteristics of the middle lamella. In each cell, SPH was used to model cell protoplasm and DEM was used to model the cell wall. Drying was incorporated by varying the moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model can be used to simulate tissues under excessive moisture content reductions incorporating cell wall wrinkling. Also, compared to the state of the art SPH-DEM tissue models, the proposed model better replicates real tissues and the cell-cell interactions used ensure efficient computations. Model predictions showed good agreement both qualitatively and quantitatively with experimental findings on dried plant tissues. The proposed modelling approach is fundamentally flexible to study different cellular structures for their microscale morphological changes at dehydration.
Resumo:
A single plant cell was modeled with smoothed particle hydrodynamics (SPH) and a discrete element method (DEM) to study the basic micromechanics that govern the cellular structural deformations during drying. This two-dimensional particle-based model consists of two components: a cell fluid model and a cell wall model. The cell fluid was approximated to a highly viscous Newtonian fluid and modeled with SPH. The cell wall was treated as a stiff semi-permeable solid membrane with visco-elastic properties and modeled as a neo-Hookean solid material using a DEM. Compared to existing meshfree particle-based plant cell models, we have specifically introduced cell wall–fluid attraction forces and cell wall bending stiffness effects to address the critical shrinkage characteristics of the plant cells during drying. Also, a moisture domain-based novel approach was used to simulate drying mechanisms within the particle scheme. The model performance was found to be mainly influenced by the particle resolution, initial gap between the outermost fluid particles and wall particles and number of particles in the SPH influence domain. A higher order smoothing kernel was used with adaptive smoothing length to improve the stability and accuracy of the model. Cell deformations at different states of cell dryness were qualitatively and quantitatively compared with microscopic experimental findings on apple cells and a fairly good agreement was observed with some exceptions. The wall–fluid attraction forces and cell wall bending stiffness were found to be significantly improving the model predictions. A detailed sensitivity analysis was also done to further investigate the influence of wall–fluid attraction forces, cell wall bending stiffness, cell wall stiffness and the particle resolution. This novel meshfree based modeling approach is highly applicable for cellular level deformation studies of plant food materials during drying, which characterize large deformations.
Resumo:
Plant food materials have a very high demand in the consumer market and therefore, improved food products and efficient processing techniques are concurrently being researched in food engineering. In this context, numerical modelling and simulation techniques have a very high potential to reveal fundamentals of the underlying mechanisms involved. However, numerical modelling of plant food materials during drying becomes quite challenging, mainly due to the complexity of the multiphase microstructure of the material, which undergoes excessive deformations during drying. In this regard, conventional grid-based modelling techniques have limited applicability due to their inflexible grid-based fundamental limitations. As a result, meshfree methods have recently been developed which offer a more adaptable approach to problem domains of this nature, due to their fundamental grid-free advantages. In this work, a recently developed meshfree based two-dimensional plant tissue model is used for a comparative study of microscale morphological changes of several food materials during drying. The model involves Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM) to represent fluid and solid phases of the cellular structure. Simulation are conducted on apple, potato, carrot and grape tissues and the results are qualitatively and quantitatively compared and related with experimental findings obtained from the literature. The study revealed that cellular deformations are highly sensitive to cell dimensions, cell wall physical and mechanical properties, middle lamella properties and turgor pressure. In particular, the meshfree model is well capable of simulating critically dried tissues at lower moisture content and turgor pressure, which lead to cell wall wrinkling. The findings further highlighted the potential applicability of the meshfree approach to model large deformations of the plant tissue microstructure during drying, providing a distinct advantage over the state of the art grid-based approaches.
Resumo:
Effluent from sewage treatment plants has been associated with a range of pollutant effects. Depending on the influent composition and treatment processes the effluent may contain a myriad of different chemicals which makes monitoring very complex. In this study we aimed to monitor relatively polar organic pollutant mixtures using a combination of passive sampling techniques and a set of biochemistry based assays covering acute bacterial toxicity (Microtox™), phytotoxicity (Max-I-PAM assay) and genotoxicity (umuC assay). The study showed that all of the assays were able to detect effects in the samples and allowed a comparison of the two plants as well as a comparison between the two sampling periods. Distinct improvements in water quality were observed in one of the plants as result of an upgrade to a UV disinfection system, which improved from 24× sample enrichment required to induce a 50% response in the Microtox™ assay to 84×, from 30× sample enrichment to induce a 50% reduction in photosynthetic yield to 125×, and the genotoxicity observed in the first sampling period was eliminated. Thus we propose that biochemical assay techniques in combination with time integrated passive sampling can substantially contribute to the monitoring of polar organic toxicants in STP effluents.