963 resultados para Plant Development
Resumo:
The characterization of a coffee gene encoding a protein similar to miraculin-like proteins, which are members of the plant Kunitz serine trypsin inhibitor (STI) family of proteinase inhibitors (PIs), is described. PIs are important proteins in plant defence against insects and in the regulation of proteolysis during plant development. This gene has high identity with the Richadella dulcifica taste-modifying protein miraculin and with the tomato protein LeMir; and was named as CoMir (Coffea miraculin). Structural protein modelling indicated that CoMir had structural similarities with the Kunitz STI proteins, but suggested specific folding structures. CoMir was up-regulated after coffee leaf miner (Leucoptera coffella) oviposition in resistant plants of a progeny derived from crosses between C. racemosa (resistant) and C. arabica (susceptible). Interestingly, this gene was down-regulated during coffee leaf miner herbivory in susceptible plants. CoMir expression was up-regulated after abscisic acid application and wounding stress and was prominent during the early stages of flower and fruit development. In situ hybridization revealed that CoMir transcripts accumulated in the anther tissues that display programmed cell death (tapetum, endothecium and stomium) and in the metaxylem vessels of the petals, stigma and leaves. In addition, the recombinant protein CoMir shows inhibitory activity against trypsin. According to the present results CoMir may act in proteolytic regulation during coffee development and in the defence against L. coffeella. The similarity of CoMir with other Kunitz STI proteins and the role of CoMir in plant development and plant stress are discussed.
Resumo:
Cpfg is a program for simulating and visualizing plant development, based on the theory of L-systems. A special-purpose programming language, used to specify plant models, is an essential feature of cpfg. We review postulates of L-system theory that have influenced the design of this language. We then present the main constructs of this language, and evaluate it from a user's perspective.
Resumo:
Habitat suitability models, which relate species occurrences to environmental variables, are assumed to predict suitable conditions for a given species. If these models are reliable, they should relate to change in plant growth and function. In this paper, we ask the question whether habitat suitability models are able to predict variation in plant functional traits, often assumed to be a good surrogate for a species' overall health and vigour. Using a thorough sampling design, we show a tight link between variation in plant functional traits and habitat suitability for some species, but not for others. Our contrasting results pave the way towards a better understanding of how species cope with varying habitat conditions and demonstrate that habitat suitability models can provide meaningful descriptions of the functional niche in some cases, but not in others.
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
The enzyme HMG-CoA reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis, critical not only for normal plant development, but also for the adaptation to demanding environmental conditions. Consistent with this notion, plant HMGR is modulated by many diverse endogenous signals and external stimuli. Protein phosphatase 2A (PP2A) is involved in auxin, abscisic acid, ethylene and brassinosteroid signaling and now emerges as a positive and negative multilevel regulator of plant HMGR, both during normal growth and in response to a variety of stress conditions. The interaction with HMGR is mediated by B" regulatory subunits of PP2A, which are also calcium binding proteins. The new discoveries uncover the potential of PP2A to integrate developmental and calcium-mediated environmental signals in the control of plant HMGR.
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
The rate of leaf appearance of barley varies substantially with time of sowing. This variation has been related to both the length and the rate of change of photoperiod at the time of plant emergence. An outdoor pot experiment was conducted to test if rate of change of photoperiod directly affects phasic development and rate of leaf emergence of spring barley. Two photoperiod-sensitive cultivars (Bandulla and Galleon) were subjected to five photoperiod regimes: two constant photoperiods, of 14 and 15·5 h, and three different rates of change of photoperiod of c. 2, 9 and 13 min/day from seedling emergence to awn initiation. Photoperiod treatments significantly affected the duration from seedling emergence to awn initiation in both cultivars. Rate of change of photoperiod did not affect the rate of development towards awn initiation independently of the absolute daylength it produced. Although Bandulla had a longer duration than Galleon at any photoperiod regime, the cultivars did not vary in their sensitivity to photoperiod. When this phase was divided into the leaf initiation (LI) and spikelet initiation (SI) phases, it was evident that the sensitivity to photoperiod was not constant, being in general higher during the SI than during the LI phase. However, the magnitude of the change in sensitivity was cultivar-dependent, indicating that sensitivity to photoperiod during the different phases could be under independent genetic control. Final numbers of primordia (leaves together with maximum spikelet number) were negatively affected by increasing photoperiods, but once again, there was no evidence of any effect of the rate of change of photoperiod which was independent of the average photoperiod. Both cultivars showed similar sensitivities for final leaf number but maximum spikelet number was more sensitive to photoperiod in Galleon than in Bandulla. Highly significant linear relationships between leaf number and thermal time were found for all combinations of cultivars and photoperiod regimes (r2 > 0·98). The rate of leaf appearance (RLA) was similar for both cultivars (c. 0·0185 leaves/°Cd) and did not alter during plant development or in response to the change in photoperiod at awn initiation. The range in RLA was greater for Galleon (0·0170–0·0205 leaves/°Cd) than for Bandulla (0·0173–0·0186 leaves/°Cd). Neither of these cultivars exhibited a significant relationship between rate of leaf emergence and photoperiod or rate of change of photoperiod. The lack of significant relationships between RLA and length or rate of change of photoperiod is in contrast with previous reports using time of sowing as a main treatment.
Resumo:
LEMOS, R. C. C. AND G. F. A. MELO-DE-PINNA (Departamento de Botanica, Instituto de Biociencias, Universidade de Sao Paulo, Rua do Matao 277, Travessa 14, Cidade Universitaria, Butanta, Caixa Postal 11461, 05422-970, Sao Paulo, SP, Brasil). Morpho-anatomical variations during stem development in some epiphytic Cactaceae. J. Torrey Bot. Soc. 138: 16-25. 2011. In this study, the morpho-anatomical features of Hatiora salicornioides (Harworth) Britton & Rose, Rhipsalis floccosa Salm-Dyck Pfeiffer, Rhipsalis elliptica G. Lindb. ex K. Schum. and Epiphyllum phyllanthus (L.) Haworth. were studied during different phases of stem development. Primary (more developed) and terminal (less developed) segments showed variations of anatomical features as exhibited by the epidermal cells in surface view and transverse section. Features of the vascular system, e.g., the occurrence of non-lignified parenchyma in bands (H. salicornioides) or in small groups (R. floccosa and R. elliptica), as well as pericycle fibers and lignified cells in the medullar region, were only observed on the primary segments. Nevertheless, based on our anatomical analysis of stem segments in different developmental phases, we conclude that some characters described and used in systematic interpretations should be revised, mainly in the vascular (secondary xylem; non-xylematic vascular fibers) and dermal systems (epidermis in surface view and transverse section).
Resumo:
P>A cDNA encoding a small lysine-rich protein of unknown function was identified in a tobacco (Nicotiana tabacum) stigma/style suppression subtractive hybridization cDNA library. After its characterization, the corresponding gene was designated stigma/style cell cycle inhibitor 1 (SCI1). Fluorescence microscopy with an SCI1-GFP protein fusion demonstrated its nuclear localization, which was confined to the interchromatic region. Real-time RT-PCR and in situ hybridization experiments showed that SCI1 is stigma/style-specific and developmentally regulated. SCI1 RNAi knockdown and overexpression plants had stigmas/styles with remarkably enlarged and reduced areas, respectively, which was attributable to differences in cell numbers. These results indicate that SCI1 is a tissue-specific negative cell cycle regulator. The differences in cell division had an effect on the timing of the differentiation of the stigmatic papillar cells, suggesting that their differentiation is coupled to stigma cell divisions. This is consistent with a role for SCI1 in triggering differentiation through cell proliferation control. Our results revealed that SCI1 is a novel tissue-specific gene that controls cell proliferation/differentiation, probably as a component of a developmental signal transduction pathway.
Resumo:
This study aimed to evaluate the effect of substituting chemical nitrogen (N) fertilization for equivalent N levels from sewage sludge of Wastewater Treatment Plant (WTP) on sunflower plant development. Nutrient levels in physiologically mature leaves and seeds, besides nutrient exportation during a 130-day assay, were also assessed. The experiment was carried out in 100 m(2) permanent plots at Sao Manuel Farm, which belongs to School of Agronomical Sciences, São Paulo State University-UNESP, Botncatu, São Paulo State, Brazil. The farm is located in the municipality of Sao Manuel, São Paulo State. Experimental design was in randomized blocks including 5 treatments and 5 replicates. Treatments were: T1 - chemical N fertilization according to the recommendation for the culture; T2 - 50% N from sewage sludge and 50% N from chemical fertilization; T3 - 100% N from sewage sludge; T4 - 150% N from sewage sludge; T5 - 200% N from sewage sludge. For all treatments, equal amounts of P and K fertilization were applied. Treatments differed for plant height from 21 to 64 days, stern diameter from 28 to 57 days, and leaf number from 21 to 38 days. Seed nutrient levels slightly varied; however, the quantities of exported N, P, Mg, Fe and Zn varied as sewage sludge levels increased.
Resumo:
Nitrogen application on the cover and the maintenance of straw, conducted by direct seeding, should meet the needs of agriculture and promote soil conservation. This study evaluates the effect of pre-sowing nitrogen application in cotton crops and cover crops by direct seeding, on the development and yield of cotton. It was conducted in the municipality of Selviria-MS during the agricultural years 2005/06, 2006/07 and 2007/08. The experimental design used was a randomized block design consisting of three cover crops (forage turnip, black oat and white oat) and four nitrogen doses (0, 30, 60 and 90 kg of N ha(-1)) in pre-sowing of cotton. In April 2006, April 2007 and April 2008, the assessments of plant development and also harvesting of the experimental plots of cotton cultivars were conducted. The results showed that after planting the cover crops, the yield and development and the heights of cotton plants increased with the use of pre-sowing N of 90 kg ha(-1), also showing that the forage turnip is a coverage plant that provides increased cotton.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)