969 resultados para Percolation by invasion


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Assessing the effects of invading species on native community structure is often confounded by environmental factors and weakened by lack of replicated, long-term pre- and post-invasion monitoring. Here, we uncouple the community effects of a freshwater amphipod invader from environmental differences. In Irish rivers, the introduced Gammarus pulex replaces the native Gammarus duebeni celticus. However, the River Lissan in Northern Ireland is dissected by a weir that has slowed the upstream invasion by G. pulex. This allowed us in 2000 to sample three contiguous 150-m reaches that were (1) G. pulex dominated; (2) mixed Gammarus spp.; and (3) G. duebeni celticus only. In 2003, we resampled these reaches and one additional of mixed Gammarus species and one with only G. duebeni celticus further upstream. In temperature, conductivity, and pH, there were statistically significant but no biologically relevant differences among the five reaches of 2003, and between the three reaches surveyed in both years. Although there was evidence of recovery in macroinvertebrate diversity and richness in invaded reaches between years, continued upstream invasion was associated with sustained reductions in these community metrics as compared to un-invaded sites. Community ordination indicated (1) different associations of community composition attributed to the distribution, abundance, and biomass of the invader; and (2) increasing similarity of invaded communities over time. The impact mechanisms of G. pulex on macroinvertebrate community composition may include predation and competition. The consequences of the observed community changes for ecosystem functioning require further investigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: Basal-like breast cancers (BL-BCa) have the worst prognosis of all subgroups of this disease. Hyaluronan (HA) and the HA receptor CD44 have a long-standing association with cell invasion and metastasis of breast cancer. The purpose of this study was to establish the relation of CD44 to BL-BCa and to characterize how HA/CD44 signaling promotes a protease-dependent invasion of breast cancer (BrCa) cells.

Methods: CD44 expression was determined with immunohistochemistry (IHC) analysis of a breast cancer tissue microarray (TMA). In vitro experiments were performed on a panel of invasive BL-BCa cell lines, by using quantitative polymerase chain reaction (PCR), immunoblotting, protease activity assays, and invasion assays to characterize the basis of HA-induced, CD44-mediated invasion.

Results: Expression of the hyaluronan (HA) receptor CD44 associated with the basal-like subgroup in a cohort of 141 breast tumor specimens (P = 0.018). Highly invasive cells of the representative BL-BCa cell line, MDA-MB-231 (MDA-MB-231Hi) exhibited increased invasion through a basement membrane matrix (Matrigel) and collagen. In further experiments, HA-induced promotion of CD44 signaling potentiated expression of urokinase plasminogen activator (uPA) and its receptor uPAR, and underpinned an increased cell-associated activity of this serine protease in MDA-MB-231Hi and a further BL-BCa cell line, Hs578T cells. Knockdown of CD44 attenuated both basal and HA-stimulated uPA and uPAR gene expression and uPA activity. Inhibition of uPA activity by using (a) a gene-targeted RNAi or (b) a small-molecule inhibitor of uPA attenuated HA-induced invasion of MDA-MB-231Hi cells through Matrigel. HA/CD44 signaling also was shown to increase invasion of MDA-MB-231 cells through collagen and to potentiate the collagen-degrading activity of MDA-MB-231Hi cells. CD44 signaling was subsequently shown to upregulate expression of two potent collagen-degrading enzymes, the cysteine protease cathepsin K and the matrix metalloprotease MT1-MMP. RNAi- or shRNA-mediated depletion of CD44 in MDA-MB-231Hi cells decreased basal and HA-induced cathepsin K and MT1-MMP expression, reduced the collagen-degrading activity of the cell, and attenuated cell invasion through collagen. Pharmacologic inhibition of cathepsin K or RNAi-mediated depletion of MT1-MMP also attenuated MDA-MB-231Hi cell invasion through collagen.

Conclusion: HA-induced CD44 signaling increases a diverse spectrum of protease activity to facilitate the invasion associated with BL-BCa cells, providing new insights into the molecular basis of CD44-promoted invasion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Invasive species are often more able to rapidly and efficiently utilise resources than natives, and comparing per capita resource use at different resource densities among invaders and trophically analogous natives could allow for reliable predictions of invasiveness. In South Africa, invasion by the Mediterranean mussel Mytilus galloprovincialis has transformed wave-exposed shores, negatively affecting native mussel species. Currently, South Africa is experiencing a second mussel invasion with the recent detection of the South American Semimytilus algosus. We tested per capita uptake of an algal resource by invading M. galloprovincialis, S. algosus, and the native Aulacomya atra at different algal concentrations and temperatures, representing the west and south coasts of South Africa, to examine whether their per capita resource use could be a predictor of their spread and subsequent invasiveness. Regardless of temperature, M. galloprovincialis was the most efficient consumer, significantly reducing algal cells compared to the other species when the resource was presented in both low and high starting densities. Furthermore, these findings aligned with a greater biomass of M. galloprovincialis on the shore in comparison with the other species. Resource use by the new invader S. algosus was dependent on the density of resource and, although this species was efficient at low algal concentrations at cooler temperatures, this pattern broke down at higher algal densities. This was once more reflected in lower biomass in surveys of this species along the cool west coast. We therefore forecast that S. algosus will be become established along the south coast; however, we also predict that M. galloprovincialis will maintain dominance on these shores.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Invasive plants can have different effects of ecosystem functioning and on the provision of ecosystem services, from strongly deleterious impacts to positive effects. The nature and intensity of such effects will depend on the service and ecosystem being considered, but also on features of life strategies of invaders that influence their invasiveness as well as their influence of key processes of receiving ecosystems. To address the combined effect of these various factors we developed a robust and efficient methodological framework that allows to identify areas of possible conflict between ecosystem services and alien invasive plants, considering interactions between landscape invasibility and species invasiveness. Our framework combines the statistical robustness of multi-model inference, efficient techniques to map ecosystem services, and life strategies as a functional link between invasion, functional changes and potential provision of services by invaded ecosystems. The framework was applied to a test region in Portugal, for which we could successfully predict the current patterns of plant invasion, of ecosystem service provision, and finally of probable conflict (expressing concern for negative impacts, and value for positive impacts on services) between alien species richness (total and per plant life strategy) and the potential provision of selected services. Potential conflicts were identified for all combinations of plant strategy and ecosystem service, with an emphasis for those concerning conflicts with carbon sequestration, water regulation and wood production. Lower levels of conflict were obtained between invasive plant strategies and the habitat for biodiversity supporting service. The added value of the proposed framework in the context of landscape management and planning is discussed in perspective of anticipation of conflicts, mitigation of negative impacts, and potentiation of positive effects of plant invasions on ecosystems and their services.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

TAT-RasGAP317-326, a peptide corresponding to the 317-326 sequence of p120 RasGAP coupled with a cell-permeable TAT-derived peptide, sensitizes the death response of various tumor cells to several anticancer treatments. We now report that this peptide is also able to increase cell adherence, prevent cell migration and inhibit matrix invasion. This is accompanied by a marked modification of the actin cytoskeleton and focal adhesion redistribution. Interestingly, integrins and the small Rho GTP-binding protein, which are well-characterized proteins modulating actin fibers, adhesion and migration, do not appear to be required for the pro-adhesive properties of TAT-RasGAP317-326. In contrast, deleted in liver cancer-1, a tumor suppressor protein, the expression of which is often deregulated in cancer cells, was found to be required for TAT-RasGAP317-326 to promote cell adherence and inhibit migration. These results show that TAT-RasGAP317-326, besides its ability to favor tumor cell death, hampers cell migration and invasion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Common Tern (Sterna hirundo) is a ground nesting colonial seabird. Terns rely primarily on small prey fishes which they obtain through plunge diving for their survival as well as the survival of their offspring during the breeding season. The zebra mussel (Dreissena polymorpha) is a small bivalve mollusk that invaded North American waters in the late 1980's. Through its suspension feeding, the zebra mussel has the ability to alter the entire aquatic ecosystem, ultimately leading to a reduction in pelagic organisms including small prey fish. The objective of the study was to determine what (if any) indirect effects the invasion of the zebra mussel has had on fish prey captured by terns. The study took place in two separate two-year periods, 1990-91 and 1995-96 on a concrete breakwall off the north shore of Lake Erie near Port Colborne, Ontario. Daily nest checks revealed clutch initiation dates, egg-laying chronology, hatching success and morphological egg characteristics (length and breadth). Behavioural observations included time each sex spent in attendance with its brood, the frequency of feeding chicks and the prey species composition and size fed to chicks as well as to females (courtship feeding). Egg sizes did not differ between study periods, nor did feeding rates to chicks, suggesting that food was not a limiting resource. Terns spent less time with their broods (more time foraging) in the 1995-96 period. However, they also had significantly larger broods and fledged more offspring. The time of each individual foraging trip decreased, suggesting that fish were easier to obtain in 1995 and 1996. Lastly, kleptoparasitism rates decreased, suggesting that the costs of foraging (time, energy) actually decreased as fewer birds adopted this strategy to compensate for what I assumed to be a lack of available food (fish). The only significant difference between the periods of 1990, 1991 and 1995, 1996 was a change in diet. Terns delivered significantly fewer rainbow smelt and more emerald shiner in 1995 and 1996. However, the average size of fish delivered did not change. Thus, there was little impact on prey captured by Common Terns in Lake Erie since the invasion of the zebra mussel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitric oxide regulates many important cellular processes including motility and invasion. Many of its effects are mediated through the modification of specific cysteine residues in target proteins, a process called S-nitrosylation. Here we show that S-nitrosylation of proteins occurs at the leading edge of migrating trophoblasts and can be attributed to the specific enrichment of inducible nitric oxide synthase (iNOS/NOS2) in this region. Localisation of iNOS to the leading edge is co-incidental with a site of extensive actin polymerisation and is only observed in actively migrating cells. In contrast endothelial nitric oxide synthase (eNOS/NOS3) shows distribution that is distinct and non-colocalised with iNOS, suggesting that the protein S-nitrosylation observed at the leading edge is caused only by iNOS and not eNOS. We have identified MMP-9 as a potential target for S-nitrosylation in these cells and demonstrate that it co-localises with iNOS at the leading edge of migrating cells. We further demonstrate that iNOS plays an important role in promoting trophoblast invasion, which is an essential process in the establishment of a successful pregnancy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The accidental introduction of the spiralling whitefly, Aleurodicus dispersus Russell (Homoptera: Aleyrodidae) to Seychelles in late 2003 is exploited during early 2005 to study interactions between A. dispersus, native and exotic host plants and their associated arthropod fauna. The numbers of A. dispersus egg spirals and pupae, predator and herbivore taxa were recorded for eight related native/exotic pairs of host plants found on Mahe, the largest island in Seychelles. Our data revealed no significant difference in herbivore density (excluding A. dispersus) between related native and exotic plants, which suggests that the exotic plants do not benefit from 'enemy release'. There were also no differences in predator density, or combined species richness between native and exotic plants. Together these data suggest that 'biotic resistance' to invasion is also unlikely. Despite the apparent lack of differences in community structure significantly fewer A. dispersus egg spirals and pupae were found on the native plants than on the exotic plants. Additional data on A. dispersus density were collected on Cousin Island, a managed nature reserve in which exotic plants are carefully controlled. Significantly higher densities of A. dispersus were observed on Mahe, where exotic plants are abundant, than on Cousin. These data suggest that the rapid invasion of Seychelles by A. dispersus may largely be due to the high proportion of plant species that are both exotic and hosts of A. dispersus; no support was found for either the 'enemy release' or the 'biotic resistance' hypotheses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The prebiotic Bimuno (R) is a mixture containing galactooligosaccharides (GOSs), produced by the galactosyltransferase activity of Bifidobacterium bifidum NCIMB 411 71 using lactose as the substrate Previous in vivo and in vitro studies demonstrating the efficacy of Bimuno (R) in reducing Salmonella enterica serovar Typhimurium (S Typhimurium) colonization did not ascertain whether or not the protective effects could be attributed to the prebiotic component GOS Here we wished to test the hypothesis that GOS, derived from Bimuno (R) may confer the direct anti-invasive and protective effects of Bimuno (R) In this study the efficacy of Bimuno (R), a basal solution of Bimuno (R) without GOS [which contained glucose, galactose, lactose, maltodextrin and gum arabic in the same relative proportions (w/w) as they are found in Bimuno (R)] and purified GOS to reduce S Typhimurium adhesion and invasion was assessed using a series of in vitro and in vivo models The novel use of three dimensionally cultured HT-29-16E cells to study prebiotics in vitro demonstrated that the presence of similar to 5 mg Bimuno (R) ml(-1) or similar to 2 5 mg GOS ml(-1) significantly reduced the invasion of S Typhimurium (SL1344nal(r)) (P<0 0001) Furthermore, similar to 2 5 mg GOS ml(-1) significantly reduced the adherence of S Typhimurium (SU 344nal(r)) (P<0 0001) It was demonstrated that cells produced using this system formed multi-layered aggregates of cells that displayed excellent formation of brush borders and tight junctions In the murine ligated deal gut loops, the presence of Bimuno (R) or GOS prevented the adherence or invasion of S Typhimurium to enterocytes, and thus reduced its associated pathology This protection appeared to correlate with significant reductions in the neutral and acidic mucins detected in goblet cells, possibly as a consequence of stimulating the cells to secrete the mucin into the lumen In all assays, Bimuno (R) without GOS conferred no such protection, indicating that the basal solution confers no protective effects against S Typhimurium Collectively, the studies presented here clearly indicate that the protective effects conferred by Bimuno (R) can be attributed to GOS

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Salmonella enteritidis expresses flagella and several finely regulated fimbriae, including SEF14, SEF17 and SEF21 (type 1). A panel of mutants was prepared in three strains of S. enteritidis to elucidate the role of these surface appendages in the association with and invasion of cultured epithelial cells. In all assays, the naturally occurring regulatory-defective strain 27655R associated with tissue culture cells significantly more than wild-type progenitor strains LA5 and S1400/94. Compared with wild-type strains, SEF14 mutants had no effect on association and invasion, whereas SEF17, SEF21 and aflagellate mutants showed significant reductions in both processes. Histological examination suggested a role for SEF17 in localized, aggregative adherence, which could be specifically blocked by anti-SEF17 sera and purified SEF17 fimbriae. SEF21-mediated association was neutralized by mannose and a specific monoclonal antibody, although to observe enhanced association it was necessary for the bacteria to be in fimbriate phase prior to infection. Additionally, aflagellate mutants associated and invaded less than motile bacteria. This study demonstrated the potential for multifactorial association and invasion of epithelial cells which involved SEF17 and SEF21 fimbriae, and flagella-mediated motility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The process of host cell invasion by Trypanosoma cruzi depends on parasite energy. What source of energy is used for that event is not known. To address this and other questions related to T. cruzi energy requirements and cell invasion, we analyzed metacyclic trypomastigote forms of the phylogenetically distant CL and G strains. For both strains, the nutritional stress experienced by cells starved for 24, 36, or 48 h in phosphate-buffered saline reduced the ATP content and the ability of the parasite to invade HeLa cells proportionally to the starvation time. Inhibition of ATP production by treating parasites with rotenone plus antimycin A also diminished the infectivity. Nutrient depletion did not alter the expression of gp82, the surface molecule that mediates CL strain internalization, but increased the expression of gp90, the negative regulator of cell invasion, in the G strain. When L-proline was given to metacyclic forms starved for 36 h, the ATP levels were restored to those of nonstarved controls for both strains. Glucose had no such effect, although this carbohydrate and L-proline were transported in similar fashions. Recovery of infectivity promoted by L-proline treatment of starved parasites was restricted to the CL strain. The profile of restoration of ATP content and gp82-mediated invasion capacity by L-proline treatment of starved Y-strain parasites was similar to that of the CL strain, whereas the Dm28 and Dm30 strains, whose infectivity is downregulated by gp90, behaved like the G strain. L-Proline was also found to increase the ability of the CL strain to traverse a gastric mucin layer, a property important for the establishment of T. cruzi infection by the oral route. Efficient translocation of parasites through gastric mucin toward the target epithelial cells in the stomach mucosa is an essential requirement for subsequent cell invasion. By relying on these closely associated ATP-driven processes, the metacyclic trypomastigotes effectively accomplish their internalization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis (Pb) yeast cells can enter mammalian cells and probably manipulate the host cell environment to favor their own growth and survival. We studied the uptake of strain Pb 18 into A549 lung and Vero epithelial cells, with an emphasis on the repercussions in the cytoskeleton and the apoptosis of host cells. Cytoskeleton components of the host cells, such as actin and tubulin, were involved in the P. brasiliensis invasion process. Cytochalasin D and colchicine treatment substantially reduced invasion, indicating the functional participation of microfilaments (MFs) and microtubules (MTs) in this mechanism. Cytokeratin could also play a role in the P. brasiliensis interaction with the host. Gp43 was recognized by anti-actin and anti-cytokeratin antibodies, but not by anti-tubulin. The apoptosis induced by this fungus in infected epithelial cells was demonstrated by various techniques: TUNEL, DNA fragmentation and Bak and Bcl-2 immunocytochemical expression. DNA fragmentation was observed in infected cells but not in uninfected ones, by both TUNEL and gel electrophoresis methods. Moreover, Bcl-2 and Bak did not show any differences until 24 h after infection of cells, suggesting a competitive mechanism that allows persistence of infection. Overexpression of Bak was observed after 48 h, indicating the loss of competition between death and survival signals. In conclusion, the mechanisms of invasion of host cells, persistence within them, and the subsequent induction of apoptosis of such cells may explain the efficient dissemination of P. brasiliensis. (C) 2004 Published by Elsevier SAS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)