101 resultados para PbTiO3
Resumo:
Pb(Zr,Ti)O-3 (PZT) based compositions have been challenging to texture or grow in a single crystal form due to the incongruent melting point of ZrO2. Here we demonstrate the method for achieving 90% textured PZT-based ceramics and further show that it can provide highest known energy density in piezoelectric materials through enhancement of piezoelectric charge and voltage coefficients (d and g). Our method provides more than similar to 5x increase in the ratio d(textured)/d(random). A giant magnitude of d.g coefficient with value of 59 000 x 10(-15) m(2) N-1 (comparable to that of the single crystal counterpart and 359% higher than that of the best commercial compositions) was obtained. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789854]
Resumo:
The influence of an electrically inhomogeneous epitaxial bottom layer on the ferroelectric and electrical properties has been explored in epitaxial PbTiO3 (PTO)/La0.7Sr0.3MnO3 (LSMO) submicron structures using atomic force microscopy. The submicron LSMO-dot structures underneath the ferroelectric PTO film allow exploring gradual changes in material properties. The LSMO interfacial layer influences significantly both electrical and ferroelectric properties of the upper PTO layer. The obtained results show that the as-grown polarization state of an epitaxial ferroelectric layer is strongly influenced by the properties of the layer on top of which it is deposited. (C) 2013 AIP Publishing LLC.
Resumo:
The relationship between retention loss in single crystal PbTiO3 ferroelectric thin films and leakage currents is demonstrated by piezoresponse and conductive atomic force microscopy measurements. It was found that the polarization reversal in the absence of an electric field followed a stretched exponential behavior 1-exp[-(t/k)(d)] with exponent d>1, which is distinct from a dispersive random walk process with d <. The latter has been observed in polycrystalline films for which retention loss was associated with grain boundaries. The leakage current indicates power law scaling at short length scales, which strongly depends on the applied electric field. Additional information of the microstructure, which contributes to an explanation of the presence of leakage currents, is presented with high resolution transmission electron microscopy analysis.
Resumo:
Domain microstructures in single crystal lamellae of 88%Pb(Zn1/3Nb2/3)O3-12%PbTiO3 (cut from bulk using focused ion beam milling) have been mapped using both piezoresponse force microscopy and transmission electron microscopy. Dramatic changes from mottled microstructures typical of relaxors to larger scale domains typical of ferroelectrics have been noted. Stresses associated with substrate clamping are suspected as the cause for the transition from short- to long-range polar order, akin to effects induced by cation ordering achieved by thermal quenching.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PbTiO3 thin films were deposited on Si(100) via hybrid chemical method and crystallized between 400 and 700 degreesC to study the effect of the crystallization kinetics on structure and microstructure of these materials. X-ray diffraction (XRD) technique was used to study the structure of the crystallized films. In the temperature range investigated, the lattice strain (c/a) presented a maximum value (c/a = 1.056) for film crystallized at 600 degreesC for I h. Atomic force microscopy (AFM) was used in investigation of the microstructure of the films. The rms roughness of the films linearly increases with temperature and ranged from 1.25 to 9.04 nm while the grain sizes ranged from 130.6 to 213.6 nm. Greater grain size was observed for film crystallized at 600 degreesC for 1 h. (C) 2002 Elsevier B.V. S.A. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sm-doped PbTiO3 powder was synthesized by the polymeric precursor method, and was heat treated at different temperatures. The x-ray diffraction, photoluminescence, and UV-visible were used as a probe for the structural order degree short-, intermediate-, and long-range orders. Sm-3+ ions were used as markers of these order-disorder transformations in the PbTiO3 system. From the Rietveld refinement of the Sm-doped PbTiO3 x-ray diffraction data, structural models were obtained and analyzed by periodic ab initio quantum mechanical calculations using the CRYSTAL 98 package within the framework of density functional theory at the B3LYP level. This program can yield important information regarding the structural and electronic properties of crystalline and disordered structures. The experimental and theoretical results indicate the presence of the localized states in the band gap, due to the symmetry break, which is responsible for visible photoluminescence at room temperature in the disordered structure. (c) 2006 American Institute of Physics.
Resumo:
Er3+ ions were added to the PbTiO3 network using the polymeric precursor method to characterize the order-disorder transformation found in this material by means of experimental and theoretical approach. The disordered and ordered material structures were studied by photoluminescence measurements, X-ray diffraction (XRD) and U-V-visible spectroscopy. The Er3+ ions served as a marker to identify the structural short-range order beginning in the PbTiO3 matrix. From photoluminescence results it was concluded that disordered PbTiO3 powders have a certain short range order in the network that are undetected by XRD measurements. The electronic structures were calculated by the ab initio periodic method in DFT level with the non-local B3LYP hybrid approximation for the Ti atom site interpretation using density of states (DOS) results. This analysis enabled understanding that Ti atom sphere coordination can create possible states for radioactive return and trap of electron-holes pair. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This letter reports on a process to prepare nanostructured PbTiO3 (PT) at room temperature with photoluminescence (PL) emission in the visible range. This process is based on the high-energy mechanical milling of ultrafine PbTiO3 powder. The results suggest that high-energy mechanical milling modifies the particle's structure, resulting in localized states in an interfacial region between the crystalline PT and the amorphous PT. These localized states are believed to be responsible for the PL obtained with short milling times. When long milling times are employed, the amorphous phase that is formed causes PL behavior. An alternative method to process nanostructured wide-band-gap semiconductors with active optical properties such as PL is described in this letter. (C) 2001 American Institute of Physics.
Resumo:
A polymeric precursor method was used to synthesis PbTiO3 amorphous thin film processed at low temperature. The luminescence spectra of PbTiO3 amorphous thin films at room temperature revealed an intense single-emission band in the visible region, the visible emission band was found to be dependent on the thermal treatment history, Photoluminescence properties Versus different annealing temperatures were investigated. The experimental results (XRD, AFM, FL) indicate that the nature of photoluminescence (PL) must be related to the disordered structure of PbTiO3 amorphous thin films, Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Samarium doped PbTiO3 (PT:Sm) and pure PbTiO3 (PT) powders were obtained by polymeric precursor method. These powders were characterized by X-ray diffraction (XRD) and theoretical calculations using the CRYSTAL98 program. The effect of the samarium atom is taken into account only indirectly. The experimental models were compared with the cubic (ideal) and tetragonal theoretical models. The structure deformations existent in the experimental compounds were analyzed from the tiny structural differences that lead to perturbations in the crystal orbital splittings. This paper proposes an efficient alternative methodology for defining structural distortions. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Structural and electronic properties of the bulk and relaxed surfaces (TiO2 and PbO terminated) of cubic PbTiO3 are investigated by means of periodic quantum-mechanical calculations based on density functional theory. It is observed that the difference in surface energies is small and relaxations effects are most prominent for Ti and Ph surface atoms. The electronic structure shows a splitting of the lowest conduction bands for the TiO2 terminated surface and of the highest valence bands for the PbO terminated slab. The calculated indirect band gap is: 3.18, 2.99 and 3.03 eV for bulk, TiO2 and PbO terminations, respectively. The electron density maps show that the Ti-O bond has a partial covalent character, whereas the Pb-O bonds present a very low covalency. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report a study of residual stress in PbTiO3 (PT) thin films prepared on Si substrates by a polymeric chemical method. The E(1TO) frequency was used to evaluate the residual stress through an empirical equation available for bulk PT. We find that the residual stress in PT films increases as the film thickness decreases and conclude that it originates essentially from the contributions of extrinsic and intrinsic factors. Polarized Raman experiments showed that the PT films prepared by a polymeric chemical method are somewhat a-domain (polar axis c parallel to the substrate) oriented.