990 resultados para Passive Air Sampling
Resumo:
The passive sampling technique has been widely used for many years in the measurement of personal exposure to pollutantes in the workplace. In recent years the technique has been used too for measurements in ambient air. In the specific case of SO2 a variety of passive samplers have been described in the literature. The great number are diffusive samplers and some few are permeation samplers. They are basically of two types: badge and tube-type. However there are more than 10 variations in relation to the sampler dimensions, diffusion barriers and pollutant sorption medium. The technique trend to be very used in the near future with samplers able to reach very low detection limits, proposing a viable option for monitoring specific species at urban, regional and global scales.
Resumo:
Compared to other volatile carbonylic compounds present in outdoor air, formaldehyde (CH2O) is the most toxic, deserving more attention in terms of indoor and outdoor air quality legislation and control. The analytical determination of CH2O in air still presents challenges due to the low-level concentration (in the sub-ppb range) and its variation with sampling site and time. Of the many available analytical methods for carbonylic compounds, the most widespread one is the time consuming collection in cartridges impregnated with 2,4-dinitrophenylhydrazine followed by the analysis of the formed hydrazones by HPLC. The present work proposes the use of polypropylene hollow porous capillary fibers to achieve efficient CH2O collection. The Oxyphan (R) fiber (designed for blood oxygenation) was chosen for this purpose because it presents good mechanical resistance, high density of very fine pores and high ratio of collection area to volume of the acceptor fluid in the tube, all favorable for the development of air sampling apparatus. The collector device consists of a Teflon pipe inside of which a bundle of polypropylene microporous capillary membranes was introduced. While the acceptor passes at a low flow rate through the capillaries, the sampled air circulates around the fibers, impelled by a low flow membrane pump (of the type used for aquariums ventilation). The coupling of this sampling technique with the selective and quantitative determination of CH2O, in the form of hydroxymethanesulfonate (HMS) after derivatization with HSO3-, by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-(CD)-D-4) enabled the development of a complete analytical protocol for the CH2O evaluation in air. (C) 2008 Published by Elsevier B.V.
Resumo:
This paper describes a long-range remotely controlled CE system built on an all-terrain vehicle. A four-stroke engine and a set of 12-V batteries were used to provide power to a series of subsystems that include drivers, communication, computers, and a capillary electrophoresis module. This dedicated instrument allows air sampling using a polypropylene porous tube, coupled to a flow system that transports the sample to the inlet of a fused-silica capillary. A hybrid approach was used for the construction of the analytical subsystem combining a conventional fused-silica capillary (used for separation) and a laser machined microfluidic block, made of PMMA. A solid-state cooling approach was also integrated in the CE module to enable controlling the temperature and therefore increasing the useful range of the robot. Although ultimately intended for detection of chemical warfare agents, the proposed system was used to analyze a series of volatile organic acids. As such, the system allowed the separation and detection of formic, acetic, and propionic acids with signal-to-noise ratios of 414, 150, and 115, respectively, after sampling by only 30 s and performing an electrokinetic injection during 2.0 s at 1.0 kV.
Resumo:
This thesis covers sampling and analytical procedures for isocyanates (R-NCO) and amines (R-NH2), two kinds of chemicals frequently used in association with the polymeric material polyurethane (PUR). Exposure to isocyanates may result in respiratory disorders and dermal sensitisation, and they are one of the main causes of occupational asthma. Several of the aromatic diamines associated with PUR production are classified as suspected carcinogens. Hence, the presence of these chemicals in different exposure situations must be monitored. In the context of determining isocyanates in air, the methodologies included derivatisation with the reagent di-n-butylamine (DBA) upon collection and subsequent determination using liquid chromatography (LC) and mass spectrometric detection (MS). A user-friendly solvent-free sampler for collection of airborne isocyanates was developed as an alternative to a more cumbersome impinger-filter sampling technique. The combination of the DBA reagent together with MS detection techniques revealed several new exposure situations for isocyanates, such as isocyanic acid during thermal degradation of PUR and urea-based resins. Further, a method for characterising isocyanates in technical products used in the production of PUR was developed. This enabled determination of isocyanates in air for which pure analytical standards are missing. Tandem MS (MS/MS) determination of isocyanates in air below 10-6 of the threshold limit values was achieved. As for the determination of amines, the analytical methods included derivatisation into pentafluoropropionic amide or ethyl carbamate ester derivatives and subsequent MS analysis. Several amines in biological fluids, as markers of exposure for either the amines themselves or the corresponding isocyanates, were determined by LC-MS/MS at amol level. In aqueous extraction solutions of flexible PUR foam products, toluene diamine and related compounds were found. In conclusion, this thesis demonstrates the usefulness of well characterised analytical procedures and techniques for determination of hazardous compounds. Without reliable and robust methodologies there is a risk that exposure levels will be underestimated or, even worse, that relevant compounds will be completely missed.
Resumo:
Summary PhD Thesis Jan Pollmann: This thesis focuses on global scale measurements of light reactive non-methane hydrocarbon (NMHC), in the volatility range from ethane to toluene with a special focus on ethane, propane, isobutane, butane, isopentane and pentane. Even though they only occur at the ppt level (nmol mol-1) in the remote troposphere these species can yield insight into key atmospheric processes. An analytical method was developed and subsequently evaluated to analyze NMHC from the NOAA – ERSL cooperative air sampling network. Potential analytical interferences through other atmospheric trace gases (water vapor and ozone) were carefully examined. The analytical parameters accuracy and precision were analyzed in detail. It was proven that more than 90% of the data points meet the Global Atmospheric Watch (GAW) data quality objective. Trace gas measurements from 28 measurement stations were used to derive the global atmospheric distribution profile for 4 NMHC (ethane, propane, isobutane, butane). A close comparison of the derived ethane data with previously published reports showed that northern hemispheric ethane background mixing ratio declined by approximately 30% since 1990. No such change was observed for southern hemispheric ethane. The NMHC data and trace gas data supplied by NOAA ESRL were used to estimate local diurnal averaged hydroxyl radical (OH) mixing ratios by variability analysis. Comparison of the variability derived OH with directly measured OH and modeled OH mixing ratios were found in good agreement outside the tropics. Tropical OH was on average two times higher than predicted by the model. Variability analysis was used to assess the effect of chlorine radicals on atmospheric oxidation chemistry. It was found that Cl is probably not of significant relevance on a global scale.
Resumo:
"Monitoring Systems Research and Development Division, Environmental Monitoring and Support Laboratory."
Resumo:
Because the use of filters to sample particulate matter suspended in the upper atmosphere has been investigated and has yielded rather disappointing results, an examination of other methods of upper atmospheric sampling is desirable, and this is the aim of the present report. The nature of any radioactive material, and its relation to the size and composition of the suspended particles is of particular interest.
Resumo:
1967 ed. issued by Division of Air Quality and Emission Data, as APTD 69-22.
Resumo:
Mode of access: Internet.
Resumo:
Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.
Resumo:
Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.
Resumo:
A descriptive study was developed in order to compare indoor and outdoor air contamination caused by fungi and particles in seven poultry units. Twenty eight air samples of 25 litters were collected through the impaction method on malt extract agar. Air sampling and particles concentration measurement were done in the interior and also outside premises of the poultries’ pavilions. Regarding the fungal load in the air, indoor concentration of mold was higher than outside air in six poultry units. Twenty eight species / genera of fungi were identified indoor, being Scopulariopsis brevicaulis (40.5%) the most commonly isolated species and Rhizopus sp. (30.0%) the most commonly isolated genus. Concerning outdoor, eighteen species/genera of fungi were isolated, being Scopulariopsis brevicaulis (62.6%) also the most isolated. All the poultry farms analyzed presented indoor fungi different from the ones identified outdoors. Regarding particles’ contamination, PM2.5, PM5.0 and PM10 had a statistically significant difference (Mann-Whitney U test) between the inside and outside of the pavilions, with the inside more contaminated (p=.006; p=.005; p=.005, respectively). The analyzed poultry units are potential reservoirs of substantial amounts of fungi and particles and could therefore free them in the atmospheric air. The developed study showed that indoor air was more contaminated than outdoors, and this can result in emission of potentially pathogenic fungi and particles via aerosols from poultry units to the environment, which may post a considerable risk to public health and contribute to environmental pollution.
Resumo:
Aflatoxin B1 (AFB1) has been recognized to produce cancer in human liver. In addition, epidemiological and laboratory studies demonstrated that the respiratory system was a target for AFB1. Exposure occurs predominantly through the food chain, but inhalation represents an additional route of exposure. The present study aimed to examine AFB1 exposure among poultry workers in Portugal. Blood samples were collected from a total of 31 poultry workers from six poultry farms. In addition, a control group (n = 30) was included comprised of workers who undertook administrative tasks. Measurement of AFB1 in serum was performed by enzyme-linked immunosorbent assay (ELISA). For examining fungi contamination, air samples were collected through an impaction method. Air sampling was obtained in pavilion interior and outside the premises, since this was the place regarded as the reference location. Using molecular methods, toxicogenic strains (aflatoxin-producing) were investigated within the group of species belonging to Aspergillus flavus complex. Eighteen poultry workers (59%) had detectable levels of AFB1 with values ranging from <1 ng/ml to4.23 ng/ml and with a mean value of 2 ± 0.98ng/ml. AFB1 was not detected in the serum sampled from any of the controls. Aspergillus flavus was the fungal species third most frequently found in the indoor air samples analyzed (7.2%) and was the most frequently isolated species in air samples containing only Aspergillus genus (74.5%). The presence of aflatoxigenic strains was only confirmed in outdoor air samples from one of the units, indicating the presence of a source inside the building in at least one case. Data indicate that AFB1 inhalation represents an additional risk in this occupational setting that needs to be recognized, assessed, and prevented.
Resumo:
Versão preprint.
Resumo:
Water covers over 70% of the Earth's surface, and is vital for all known forms of life. But only 3% of the Earth's water is fresh water, and less than 0.3% of all freshwater is in rivers, lakes, reservoirs and the atmosphere. However, rivers and lakes are an important part of fresh surface water, amounting to about 89%. In this Master Thesis dissertation, the focus is on three types of water bodies – rivers, lakes and reservoirs, and their water quality issues in Asian countries. The surface water quality in a region is largely determined both by the natural processes such as climate or geographic conditions, and the anthropogenic influences such as industrial and agricultural activities or land use conversion. The quality of the water can be affected by pollutants discharge from a specific point through a sewer pipe and also by extensive drainage from agriculture/urban areas and within basin. Hence, water pollutant sources can be divided into two categories: Point source pollution and Non-point source (NPS) pollution. Seasonal variations in precipitation and surface run-off have a strong effect on river discharge and the concentration of pollutants in water bodies. For example, in the rainy season, heavy and persistent rain wash off the ground, the runoff flow increases and may contain various kinds of pollutants and, eventually, enters the water bodies. In some cases, especially in confined water bodies, the quality may be positive related with rainfall in the wet season, because this confined type of fresh water systems allows high dilution of pollutants, decreasing their possible impacts. During the dry season, the quality of water is largely related to industrialization and urbanization pollution. The aim of this study is to identify the most common water quality problems in Asian countries and to enumerate and analyze the methodologies used for assessment of water quality conditions of both rivers and confined water bodies (lakes and reservoirs). Based on the evaluation of a sample of 57 papers, dated between 2000 and 2012, it was found that over the past decade, the water quality of rivers, lakes, and reservoirs in developing countries is being degraded. Water pollution and destruction of aquatic ecosystems have caused massive damage to the functions and integrity of water resources. The most widespread NPS in Asian countries and those which have the greatest spatial impacts are urban runoff and agriculture. Locally, mine waste runoff and rice paddy are serious NPS problems. The most relevant point pollution sources are the effluents from factories, sewage treatment plant, and public or household facilities. It was found that the most used methodology was unquestionably the monitoring activity, used in 49 of analyzed studies, accounting for 86%. Sometimes, data from historical databases were used as well. It can be seen that taking samples from the water body and then carry on laboratory work (chemical analyses) is important because it can give an understanding of the water quality. 6 papers (11%) used a method that combined monitoring data and modeling. 6 papers (11%) just applied a model to estimate the quality of water. Modeling is a useful resource when there is limited budget since some models are of free download and use. In particular, several of used models come from the U.S.A, but they have their own purposes and features, meaning that a careful application of the models to other countries and a critical discussion of the results are crucial. 5 papers (9%) focus on a method combining monitoring data and statistical analysis. When there is a huge data matrix, the researchers need an efficient way of interpretation of the information which is provided by statistics. 3 papers (5%) used a method combining monitoring data, statistical analysis and modeling. These different methods are all valuable to evaluate the water quality. It was also found that the evaluation of water quality was made as well by using other types of sampling different than water itself, and they also provide useful information to understand the condition of the water body. These additional monitoring activities are: Air sampling, sediment sampling, phytoplankton sampling and aquatic animal tissues sampling. Despite considerable progress in developing and applying control regulations to point and NPS pollution, the pollution status of rivers, lakes, and reservoirs in Asian countries is not improving. In fact, this reflects the slow pace of investment in new infrastructure for pollution control and growing population pressures. Water laws or regulations and public involvement in enforcement can play a constructive and indispensable role in environmental protection. In the near future, in order to protect water from further contamination, rapid action is highly needed to control the various kinds of effluents in one region. Environmental remediation and treatment of industrial effluent and municipal wastewaters is essential. It is also important to prevent the direct input of agricultural and mine site runoff. Finally, stricter environmental regulation for water quality is required to support protection and management strategies. It would have been possible to get further information based in the 57 sample of papers. For instance, it would have been interesting to compare the level of concentrations of some pollutants in the diferente Asian countries. However the limit of three months duration for this study prevented further work to take place. In spite of this, the study objectives were achieved: the work provided an overview of the most relevant water quality problems in rivers, lakes and reservoirs in Asian countries, and also listed and analyzed the most common methodologies.