917 resultados para Parallel or distributed processing
Resumo:
In this paper we survey the most relevant results for the prioritybased schedulability analysis of real-time tasks, both for the fixed and dynamic priority assignment schemes. We give emphasis to the worst-case response time analysis in non-preemptive contexts, which is fundamental for the communication schedulability analysis. We define an architecture to support priority-based scheduling of messages at the application process level of a specific fieldbus communication network, the PROFIBUS. The proposed architecture improves the worst-case messages’ response time, overcoming the limitation of the first-come-first-served (FCFS) PROFIBUS queue implementations.
Resumo:
Consider the problem of scheduling a set of sporadically arriving tasks on a uniform multiprocessor with the goal of meeting deadlines. A processor p has the speed Sp. Tasks can be preempted but they cannot migrate between processors. We propose an algorithm which can schedule all task sets that any other possible algorithm can schedule assuming that our algorithm is given processors that are three times faster.
Resumo:
This paper proposes a dynamic scheduler that supports the coexistence of guaranteed and non-guaranteed bandwidth servers to efficiently handle soft-tasks’ overloads by making additional capacity available from two sources: (i) residual capacity allocated but unused when jobs complete in less than their budgeted execution time; (ii) stealing capacity from inactive non-isolated servers used to schedule best-effort jobs. The effectiveness of the proposed approach in reducing the mean tardiness of periodic jobs is demonstrated through extensive simulations. The achieved results become even more significant when tasks’ computation times have a large variance.
Resumo:
This paper proposes a new strategy to integrate shared resources and precedence constraints among real-time tasks, assuming no precise information on critical sections and computation times is available. The concept of bandwidth inheritance is combined with a greedy capacity sharing and stealing policy to efficiently exchange bandwidth among tasks, minimising the degree of deviation from the ideal system's behaviour caused by inter-application blocking. The proposed capacity exchange protocol (CXP) focus on exchanging extra capacities as early, and not necessarily as fairly, as possible. This loss of optimality is worth the reduced complexity as the protocol's behaviour nevertheless tends to be fair in the long run and outperforms other solutions in highly dynamic scenarios, as demonstrated by extensive simulations.
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. This has motivated many initiatives that have been developing scientific workflow tools. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from workflow tasks specification, decentralizing the control of workflow activities, and allowing their tasks to run autonomous in distributed infrastructures, for instance on Clouds. Furthermore many workflow tools only support the execution of Direct Acyclic Graphs (DAG) without the concept of iterations, where activities are executed millions of iterations during long periods of time and supporting dynamic workflow reconfigurations after certain iteration. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on the Process Networks model, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures, e. g. on Clouds. Each AWA executes a Task developed as a Java class that implements a generic interface allowing end-users to code their applications without concerns for low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables support to dynamic workflow reconfiguration and monitoring of the execution of workflows. We describe how AWARD supports dynamic reconfiguration and discuss typical workflow reconfiguration scenarios. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to a small dedicated cluster and the Amazon (Elastic Computing EC2) Cloud.
Resumo:
The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks including sensor networks. It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When enabling its beacon mode, the protocol makes possible real-time guarantees by using its Guaranteed Time Slot (GTS) mechanism. This paper analyzes the performance of the GTS allocation mechanism in IEEE 802.15.4. The analysis gives a full understanding of the behavior of the GTS mechanism with regards to delay and throughput metrics. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters. We then evaluate the delay bounds guaranteed by an allocation of a GTS using Network Calculus formalism. Finally, based on the analytic results, we analyze the impact of the IEEE 802.15.4 parameters on the throughput and delay bound guaranteed by a GTS allocation. The results of this work pave the way for an efficient dimensioning of an IEEE 802.15.4 cluster.
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from tasks specification, decentralizing the control of workflow activities allowing their tasks to run in distributed infrastructures, and supporting dynamic workflow reconfigurations. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on Process Networks, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures. Each AWA executes a task developed as a Java class with a generic interface allowing end-users to code their applications without low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables dynamic workflow reconfiguration. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to the Amazon (Elastic Computing EC2) Cloud.
Resumo:
Decimal multiplication is an integral part of financial, commercial, and internet-based computations. A novel design for single digit decimal multiplication that reduces the critical path delay and area for an iterative multiplier is proposed in this research. The partial products are generated using single digit multipliers, and are accumulated based on a novel RPS algorithm. This design uses n single digit multipliers for an n × n multiplication. The latency for the multiplication of two n-digit Binary Coded Decimal (BCD) operands is (n + 1) cycles and a new multiplication can begin every n cycle. The accumulation of final partial products and the first iteration of partial product generation for next set of inputs are done simultaneously. This iterative decimal multiplier offers low latency and high throughput, and can be extended for decimal floating-point multiplication.
Resumo:
This paper presents a configurable architecture which was designed to aid in the simulation of ULSI circuits at the transistor level. Elsewhere [1] this architecture was shown to be able to run such simulations several times as fast as standard circuit simulators such as SPICES. In this paper, after describing the overall idea and the the architecture of the system as a whole, I concentrate on the description of the architecture of the processing elements of the computing array.
Resumo:
The 4CaaSt project aims at developing a PaaS framework that enables flexible definition, marketing, deployment and management of Cloud-based services and applications. The major innovations proposed by 4CaaSt are the blueprint and its management and lifecycle, a one stop shop for Cloud services and the management of resources in the PaaS level (including elasticity). 4CaaSt also provides a portfolio of ready to use Cloud native services and Cloud- aware immigrant technologies.
Resumo:
The dHDL language has been defined to improve hardware design productivity. This is achieved through the definition of a better reuse interface (including parameters, attributes and macroports) and the creation of control structures that help the designer in the hardware generation process.
Resumo:
Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drone’s video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW
Resumo:
Las Redes de Procesadores Evolutivos-NEP propuestas en [Mitrana et al., 2001], son un modelo computacional bio-inspirado a partir de la evolución de poblaciones de células, definiendo a nivel sintáctico algunas propiedades biológicas. En este modelo, las células están representadas por medio de palabras que describen secuencias de ADN. Informalmente, en algún instante de tiempo, el sistema evolutivo está representado por una colección de palabras cada una de las cuales representa una célula. El espacio genotipo de las especies, es un conjunto que recoge aquellas palabras que son aceptadas como sobrevivientes (es decir, como \correctas"). Desde el punto de vista de la evolución, las células pertenecen a especies y su comunidad evoluciona de acuerdo a procesos biológicos como la mutación y la división celular. éstos procesos representan el proceso natural de evolución y ponen de manifiesto una característica intrínseca de la naturaleza: el paralelismo. En este modelo, estos procesos son vistos como operaciones sobre palabras. Formalmente, el modelo de las NEP constituyen una arquitectura paralela y distribuida de procesamiento simbólico inspirada en la Máquina de conexión [Hillis, 1981], en el Paradigma de Flujo Lógico [Errico and Jesshope, 1994] y en las Redes de Procesadores Paralelos de Lenguajes (RPPL) [Csuhaj-Varju and Salomaa, 1997]. Al modelo NEP se han ido agregando nuevas y novedosas extensiones hasta el punto que actualmente podemos hablar de una familia de Redes de Procesadores Bio-inspirados (NBP) [Mitrana et al., 2012b]. Un considerable número de trabajos a lo largo de los últimos años han demostrado la potencia computacional de la familia NBP. En general, éstos modelos son computacionalmente completos, universales y eficientes [Manea et al., 2007], [Manea et al., 2010b], [Mitrana and Martín-Vide, 2005]. De acuerdo a lo anterior, se puede afirmar que el modelo NEP ha adquirido hasta el momento un nivel de madurez considerable. Sin embargo, aunque el modelo es de inspiración biológica, sus metas siguen estando motivadas en la Teoría de Lenguajes Formales y las Ciencias de la Computación. En este sentido, los aspectos biológicos han sido abordados desde una perspectiva cualitativa y el acercamiento a la realidad biológica es de forma meramente sintáctica. Para considerar estos aspectos y lograr dicho acercamiento es necesario que el modelo NEP tenga una perspectiva más amplia que incorpore la interacción de aspectos tanto cualitativos como cuantitativos. La contribución de esta Tesis puede considerarse como un paso hacia adelante en una nueva etapa de los NEPs, donde el carácter cuantitativo del modelo es de primordial interés y donde existen posibilidades de un cambio visible en el enfoque de interés del dominio de los problemas a considerar: de las ciencias de la computación hacia la simulación/modelado biológico y viceversa, entre otros. El marco computacional que proponemos en esta Tesis extiende el modelo de las Redes de Procesadores Evolutivos (NEP) y define arquitectura inspirada en la definición de bloques funcionales del proceso de señalización celular para la solución de problemas computacionales complejos y el modelado de fenómenos celulares desde una perspectiva discreta. En particular, se proponen dos extensiones: (1) los Transductores basados en Redes de Procesadores Evolutivos (NEPT), y (2) las Redes Parametrizadas de Procesadores Evolutivos Polarizados (PNPEP). La conservación de las propiedades y el poder computacional tanto de NEPT como de PNPEP se demuestra formalmente. Varias simulaciones de procesos relacionados con la señalización celular son abordadas sintáctica y computacionalmente, con el _n de mostrar la aplicabilidad e idoneidad de estas dos extensiones. ABSTRACT Network of Evolutionary Processors -NEP was proposed in [Mitrana et al., 2001], as a computational model inspired by the evolution of cell populations, which might model some properties of evolving cell communities at the syntactical level. In this model, cells are represented by words which encode their DNA sequences. Informally, at any moment of time, the evolutionary system is described by a collection of words, where each word represents one cell. Cells belong to species and their community evolves according to mutations and division which are defined by operations on words. Only those cells accepted as survivors (correct) are represented by a word in a given set of words, called the genotype space of the species. This feature is analogous with the natural process of evolution. Formally, NEP is based on an architecture for parallel and distributed processing inspired from the Connection Machine [Hillis, 1981], the Flow Logic Paradigm [Errico and Jesshope, 1994] and the Networks of Parallel Language Processors (RPPL) [Csuhaj-Varju and Salomaa, 1997]. Since the date when NEP was proposed, several extensions and variants have appeared engendering a new set of models named Networks of Bio-inspired Processors (NBP) [Mitrana et al., 2012b]. During this time, several works have proved the computational power of NBP. Specifically, their efficiency, universality, and computational completeness have been thoroughly investigated [Manea et al., 2007, Manea et al., 2010b, Mitrana and Martín-Vide, 2005]. Therefore, we can say that the NEP model has reached its maturity. Nevertheless, although the NEP model is biologically inspired, this model is mainly motivated by mathematical and computer science goals. In this context, the biological aspects are only considered from a qualitative and syntactical perspective. In view of this lack, it is important to try to keep the NEP theory as close as possible to the biological reality, extending their perspective incorporating the interplay of qualitative and quantitative aspects. The contribution of this Thesis, can be considered as a starting point in a new era of the NEP model. Then, the quantitative character of the NEP model is mandatory and it can address completely new different types of problems with respect to the classical computational domain (e.g. from the computer science to system biology). Therefore, the computational framework that we propose extends the NEP model and defines an architecture inspired by the functional blocks from cellular signaling in order to solve complex computational problems and cellular phenomena modeled from a discrete perspective. Particularly, we propose two extensions, namely: (1) Transducers based on Network of Evolutionary Processors (NEPT), and (2) Parametrized Network of Polarized Evolutionary Processors (PNPEP). Additionally, we have formally proved that the properties and computational power of NEP is kept in both extensions. Several simulations about processes related with cellular signaling both syntactical and computationally have been considered to show the model suitability.
Resumo:
Abstract not available