42 resultados para Paenibacillus lentimorbus
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Eighteen aerobic endospore forming strains were isolated from sugarcane rhizosphere in N-free medium. A phenotypic description and analysis of the 5' end hypervariable region sequences of 16S rRNA revealed a high diversity of Bacillus and related genera. Isolates were identified, and four genera were obtained: seven strains belonged to Bacillus (Bacillaceae family), four belonged to Paenibacillus, six belonged to Brevibacillus and one strain was identified as Cohnella (Paenibacillaceae family). Four Brevibacillus strains showed in vitro inhibitory activity against plant pathogens fungi Curvularia and Fusarium. Seventy-four percent of the isolated bacteria grew on pectin as the only carbon source, showing polygalacturonase activity. Pectate lyase activity was detected for the first time in a Brevibacillus genus strain. All isolates showed endoglucanase activity. Calcium phosphate solubilisation was positive in 83.3% of the isolates, with higher values than those reported for Bacillus inorganic phosphate solubilising strains. High ethylene plant hormone secretion in the culture medium was detected in 22% of the bacteria. This is the first report of ethylene secretion in Paenibacillaceae isolates. Indole-3-acetic acid production was found in a Brevibacillus genus isolate. It was reported for the first time the presence of Cohnella genus strain on sugarcane rhizosphere bearing plant growth promoting traits. The sugarcane isolate Brevibacillus B65 was identified as a plant growth inoculant because it showed wider spectra of plant stimulation capabilities, including an antifungal effect, extracellular hydrolases secretion, inorganic phosphate solubilisation and plant hormone liberation. In this work, sugarcane was shown to be a suitable niche for finding aerobic endospore forming 'Bacilli' with agriculture biotechnological purposes.
Resumo:
Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies), where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV) and Chronic bee paralysis virus) were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km). Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research.
Resumo:
The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 µatm, minimum Omega (arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 µatm, minimum Omega (arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 µatm, minimum Omega (arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments.
Resumo:
No semiárido brasileiro, a vegetação predominante é a Caatinga, bioma ainda pouco explorado, que apresenta plantas e micro-organismos com alta resistência aos períodos de seca imposto pelo clima. Os micro-organismos associados às plantas deste bioma, são capazes de desenvolver mecanismos de proteção celular contra o estresse hídrico, assim como proteção vegetal contra a dessecação. O presente estudo buscou compreender as rizobactérias associadas a Mimosa artemisiana a fim de selecionar bactérias tolerantes à seca com características de promover o crescimento de plantas sob condições de estresse hídrico, diminuindo assim, os efeitos adversos impostos pela seca. As amostras de solo rizosférico foram coletadas ao longo da Caatinga, englobando os estados da BA e PE, totalizando quatro pontos de coleta. Com o uso de metodologias dependentes de cultivo, foi isolado bactérias com algumas características de promoção de crescimento de plantas diretos e/ou indiretos, como produção de AIA e fixação de nitrogênio. Além disso, linhagens capazes de crescer em meio com reduzida atividade de água e com mecanismos de proteção contra a dessecação, como, produção de EPS, biofilme, produção da ACC deaminase e indução de resistência sistêmica através das enzimas peroxidase e polifenoloxidase. Uma linhagem de Paenibacillus sp. e outra de Bacillus sp. foram capazes de promover o crescimento de soja sob condições de estresse hídrico, aumentando alguns parâmetros vegetais como, parte aérea e sistema radicular analisados.
Resumo:
Las abejas, principalmente la especie Apis mellifera, desarrollan una función biológica muy importante puesto que se encargan de polinizar diversos cultivos agrícolas y la flora silvestre de todo el mundo. No obstante, existen numerosos factores que influyen en el estado sanitario de las colonias de abejas y presentan además un alto grado de interacciones entre ellos. Algunos de los potenciales riesgos para la apicultura española ya han sido identificados, como por ejemplo las dos especies de microsporidios, Nosema apis y N. ceranae, que actúan como parásitos intracelulares obligados o los ectoparásitos Varroa destructor, Acarapis woodi o Braula coeca; así como numerosos virus capaces de infectar a Apis melífera, de los cuales los principales son el virus de las alas deformadas (DWV), el virus de las realeras negras (BQCV), el virus Kashmir (KBV), el virus de la parálisis aguda (ABPV) y su variante israelí (IAPV). Otras enfermedades que afectan fundamentalmente a la cría de abejas son la loque americana y la loque europea, ambas de origen bacteriano (Paenibacillus larvae y Melissococcus plutonius respectivamente), así como la ascosferosis causada por el hongo Ascosphaera apis. Otro riesgo potencial para las abejas es la posible entrada de agentes exóticos como el coleóptero Aethina tumida o el ácaro Tropilaelaps clareae cuya presencia en Europa debe ser declarada según la OIE (2015). Recientemente se ha incluido a los neogregarinos y tripanosomátidos como posibles agentes patógenos. Actualmente, N. ceranae junto con V. destructor son los principales agentes patógenos que producen problemas sanitarios de las colonias de abejas en Europa. Además, se considera que los patógenos podrían jugar un papel primordial en el incremento de mortalidad de las abejas detectado en distintos países durante los últimos años...
Resumo:
he present model of agriculture is based on intensive use of industrial inputs, due to its rapid response, but it brings harmful consequences to the environment, and it is necessary the use of modern inputs. And an alternative is the use of rock biofertilizers in agriculture, a product easy to use, with higher residual effect and does not harm the environment. The objective of study was to evaluate the inoculation and co-inoculation of different microorganisms in the solubilization of rock phosphate and potash ground microbial evaluating the best performance in the production of biofertilizers comparing with rocks pure in soil chemical properties and, verify effect of inoculation of the bacterium Paenibacillus polymyxa in the absorption of minerals dissolved in the development of cowpea (Vigna unguiculata [L.] Walp.). The first bioassay was conducted in Laboratory (UFRN) for 72 days in Petri dishes, where the rock powder was increased by 10% and sulfur co-inoculated and inoculated with bacterial suspension of Paenibacillus polymyxa grown in medium tryptone soy broth, Ralstonia solanacearum in medium Kelman, Cromobacterium violaceum in medium Luria-Bertani and Acidithiobacillus thiooxidans in medium Tuovinen and Kelly,and fungi Trichoderma humatum and Penicillium fellutanum in malt extract. Every 12 days, samples were removed in order to build up the release curve of minerals. The second bioassay was conducted in a greenhouse of the Agricultural Research Corporation of Rio Grande do Norte in experimental delineation in randomized block designs, was used 10 kg of an Yellow Argissolo Dystrophic per pot with the addition of treatments super phosphate simple (SS), potassium chloride (KCl), pure rock, biofertilizers in doses 40, 70, 100 and 200% of the recommendation for SS and KCl, and a control, or not inoculated with bacteria P. polymyxa. Were used seeds of cowpea BRS Potiguar and co-inoculated with the bacterial suspension of Bradyrhizobium japonicum and P. polymyxa. The first crop was harvested 45 days after planting, were evaluated in the dry matter (ADM), macronutrients (N, P, K, Ca, Mg) and micronutrients (Zn, Fe, Mn) in ADM. And the second at 75 days assessing levels of macro end micronutrients in plants and soil, and the maximum adsorption capacity of P in soil. The results showed synergism in co-inoculations with P. polymyxa+R. solanacearum and, P. polymyxa+C. violaceum solubilizations providing higher P and K, respectively, and better solubilization time at 36 days. The pH was lower in biofertilizers higher doses, but there was better with their addition to P at the highest dose. Significant reduction of maximum adsorption capacity of phosphorus with increasing dose of biofertilizer. For K and Ca was better with SS+KCl, and Mg to pure rock. There was an effect of fertilization on the absorption, with better results for P, K and ADM with SS+KCL, and N, Ca and Mg for biofertilizers. Generally, the P. polymyxa not influence the absorption of the elements in the plant. In treatments with the uninoculated P. polymyxa chemical fertilizer had an average significantly higher for weight and number of grains. And in the presence of the bacteria, biofertilizers and chemical fertilizers had positive values in relation to rock and control. The data show that the rocks and biofertilizers could meet the need of nutrients the plants revealed as potential for sustainable agriculture
Resumo:
Mestrado em Engenharia Alimentar - Instituto Superior de Agronomia - UL
Resumo:
Potato is the most important food crop after wheat and rice. A changing climate, coupled with a heightened consumer awareness of how food is produced and legislative changes governing the usage of agrochemicals, means that alternative more integrated and sustainable approaches are needed for crop management practices. Bioprospecting in the Central Andean Highlands resulted in the isolation and in vitro screening of 600 bacterial isolates. The best performing isolates, under in vitro conditions, were field trialled in their home countries. Six of the isolates, Pseudomonas sp. R41805 (Bolivia), Pseudomonas palleroniana R43631 (Peru), Bacillus sp. R47065, R47131, Paenibacillus sp. B3a R49541, and Bacillus simplex M3-4 R49538 (Ecuador), showed significant increase in the yield of potato. Using – omic technologies (i.e. volatilomic, transcriptomic, proteomic and metabolomic), the influence of microbial isolates on plant defence responses was determined. Volatile organic compounds of bacterial isolates were identified using GC/MS. RT-qPCR analysis revealed the significant expression of Ethylene Response Factor 3 (ERF3) and the results of this study suggest that the dual inoculation of potato with Pseudomonas sp. R41805 and Rhizophagus irregularis MUCL 41833 may play a part in the activation of plant defence system via ERF3. The proteomic analysis by 2-DE study has shown that priming by Pseudomonas sp. R41805 can induce the expression of proteins related to photosynthesis and protein folding in in vitro potato plantlets. The metabolomics study has shown that the total glycoalkaloid (TGA) content of greenhouse-grown potato tubers following inoculation with Pseudomonas sp. R41805 did not exceed the acceptable safety limit (200 mg kg-1 FW). As a result of this study, a number of bacteria have been identified with commercial potential that may offer sustainable alternatives in both Andean and European agricultural settings.
Resumo:
Muitos métodos rápidos e eficientes de seleção de agentes de biocontrole de fitopatógenos tem sido utilizados, visando reduzir tempo e custo dispendido em testes de campo. Neste trabalho realizou-se uma seleção de isolados endofíticos com potencial de uso no biocontrole de fitopatógenos em testes de antagonismo in vitro. De um total de 95 isolados de bactérias endofíticas do milho, seis foram selecionados quanto à inibição a Pythium aphanidermatum. A essa seleção, foram incluídos um isolado de Bacillus subtilis 0G, Bacillus lentimorbus e Streptomyces sp., para verificação de antagonismo a Rhizoctonia solani, Fusarium moniliforme, Sclerotium rolfsii e Exserohilum turcicum. Verificou-se que os endofíticos B. subtilis 0G, B. lentimorbus e Streptomyces sp., apresentaram ação antagônica superior aos demais, com taxas de inibição entre 32,0% e 53,8%. Dentre os endofíticos do milho, Bacillus agaradhaerens foi o que mais se destacou, com taxas de inibição variando entre 43,7% e 52,3% e indicando uma inespecificidade de ação. Este estudo, embora preliminar, permite vislumbrar a utilização desses endofíticos na supressão de doenças em diferentes sistemas patógeno-hospedeiro em testes subseqüentes, sob condições de casa-de-vegetação e a campo.