641 resultados para PUMPS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to its practical importance and inherent complexity, the optimisation of distribution networks for supplying drinking water has been the subject of extensive study for the past 30 years. The optimization is governed by sizing the pipes in the water distribution network (WDN) and / or optimises specific parts of the network such as pumps, tanks etc. or try to analyse and optimise the reliability of a WDN. In this thesis, the author has analysed two different WDNs (Anytown City and Cabrera city networks), trying to solve and optimise a multi-objective optimisation problem (MOOP). The main two objectives in both cases were the minimisation of Energy Cost (€) or Energy consumption (kWh), along with the total Number of pump switches (TNps) during a day. For this purpose, a decision support system generator for Multi-objective optimisation used. Its name is GANetXL and has been developed by the Center of Water System in the University of Exeter. GANetXL, works by calling the EPANET hydraulic solver, each time a hydraulic analysis has been fulfilled. The main algorithm used, was a second-generation algorithm for multi-objective optimisation called NSGA_II that gave us the Pareto fronts of each configuration. The first experiment that has been carried out was the network of Anytown city. It is a big network with a pump station of four fixed speed parallel pumps that are boosting the water dynamics. The main intervention was to change these pumps to new Variable speed driven pumps (VSDPs), by installing inverters capable to diverse their velocity during the day. Hence, it’s been achieved great Energy and cost savings along with minimisation in the number of pump switches. The results of the research are thoroughly illustrated in chapter 7, with comments and a variety of graphs and different configurations. The second experiment was about the network of Cabrera city. The smaller WDN had a unique FS pump in the system. The problem was the same as far as the optimisation process was concerned, thus, the minimisation of the energy consumption and in parallel the minimisation of TNps. The same optimisation tool has been used (GANetXL).The main scope was to carry out several and different experiments regarding a vast variety of configurations, using different pump (but this time keeping the FS mode), different tank levels, different pipe diameters and different emitters coefficient. All these different modes came up with a large number of results that were compared in the chapter 8. Concluding, it should be said that the optimisation of WDNs is a very interested field that has a vast space of options to deal with. This includes a large number of algorithms to choose from, different techniques and configurations to be made and different support system generators. The researcher has to be ready to “roam” between these choices, till a satisfactory result will convince him/her that has reached a good optimisation point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the effect of time derivatives of flow rate and rotational speed was investigated on the mathematical modeling of a rotary blood pump (RBP). The basic model estimates the pressure head of the pump as a dependent variable using measured flow and speed as predictive variables. Performance of the model was evaluated by adding time derivative terms for flow and speed. First, to create a realistic working condition, the Levitronix CentriMag RBP was implanted in a sheep. All parameters from the model were physically measured and digitally acquired over a wide range of conditions, including pulsatile speed. Second, a statistical analysis of the different variables (flow, speed, and their time derivatives) based on multiple regression analysis was performed to determine the significant variables for pressure head estimation. Finally, different mathematical models were used to show the effect of time derivative terms on the performance of the models. In order to evaluate how well the estimated pressure head using different models fits the measured pressure head, root mean square error and correlation coefficient were used. The results indicate that inclusion of time derivatives of flow and speed can improve model accuracy, but only minimally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the swirl component of air injection on the performance of an airlift pump was examined experimentally. An airlift pump is a device that pumps a liquid or slurry using only gas injection. In this study, the liquid used was water and the injected gas was air. The effect of the air swirl was determined by measuring the water discharge from an airlift pump with an air injection nozzle in which the air flow had both axial and tangential components and then repeating the tests with a nozzle with only axial injection. The induced water flow was measured using an orifice meter in the supply pipeline. Tests were run for air pressures ranging from 10 to 30 pounds per square inch, gauge (psig), at flow rates from 5 standard cubic feet per minute (scfm) up the maximum values attainable at the given pressure (usually in the range from 20 to 35 scfm). The nozzle with only axial injection produced a water flow rate that wasequivalent to or better than that induced by the nozzle with swirl. The swirl component of air injection was found to be detrimental to pump performance for all but the smallest air injection flow rate. Optimum efficiency was found for air injection pressures of 10 psig to 15 psig. In addition, the effect of using auxiliary tangential injection of water to create a swirl component in the riser before air injection on the overall capacity (i.e., flow rate) and efficiencyof the pump was examined. Auxiliary tangential water injection was found to have no beneficial effect on the pump capacity or performance in the present system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical support of a failing heart is typically performed with rotary blood pumps running at constant speed, which results in a limited control on cardiac workload and nonpulsatile hemodynamics. A potential solution to overcome these limitations is to modulate the pump speed to create pulses. This study aims at developing a pulsatile control algorithm for rotary pumps, while investigating its effect on left ventricle unloading and the hemodynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the introduction of the rope-pump in Nicaragua in the 1990s, the dependence on wells in rural areas has grown steadily. However, little or no attention is paid to rope-pump well performance after installation. Due to financial restraints, groundwater resource monitoring using conventional testing methods is too costly and out of reach of rural municipalities. Nonetheless, there is widespread agreement that without a way to quantify the changes in well performance over time, prioritizing regulatory actions is impossible. A manual pumping test method is presented, which at a fraction of the cost of a conventional pumping test, measures the specific capacity of rope-pump wells. The method requires only sight modifcations to the well and reasonable limitations on well useage prior to testing. The pumping test was performed a minimum of 33 times in three wells over an eight-month period in a small rural community in Chontales, Nicaragua. Data was used to measure seasonal variations in specific well capacity for three rope-pump wells completed in fractured crystalline basalt. Data collected from the tests were analyzed using four methods (equilibrium approximation, time-drawdown during pumping, time-drawdown during recovery, and time-drawdown during late-time recovery) to determine the best data-analyzing method. One conventional pumping test was performed to aid in evaluating the manual method. The equilibrim approximation can be performed while in the field with only a calculator and is the most technologically appropriate method for analyzing data. Results from this method overestimate specific capacity by 41% when compared to results from the conventional pumping test. The other analyes methods, requiring more sophisticated tools and higher-level interpretation skills, yielded results that agree to within 14% (pumping phase), 31% (recovery phase) and 133% (late-time recovery) of the conventional test productivity value. The wide variability in accuracy results principally from difficulties in achieving equilibrated pumping level and casing storage effects in the puping/recovery data. Decreases in well productivity resulting from naturally occuring seasonal water-table drops varied from insignificant in two wells to 80% in the third. Despite practical and theoretical limitations on the method, the collected data may be useful for municipal institutions to track changes in well behavior, eventually developing a database for planning future ground water development projects. Furthermore, the data could improve well-users’ abilities to self regulate well usage without expensive aquifer characterization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past few decades, advances in ventricular assist device (VAD) technology have provided a promising therapeutic strategy to treat heart failure patients. Despite the improved performance and encouraging clinical outcomes of the new generation of VADs based on rotary blood pumps (RBPs), their physiologic and hematologic effects are controversial. Currently, clinically available RBPs run at constant speed, which results in limited control over cardiac workload and introduces blood flow with reduced pulsatility into the circulation. In this review, we first provide an update on the new challenges of mechanical circulatory support using rotary pumps including blood trauma, increased non-surgical bleeding rate, limited cardiac unloading, vascular malformations, end-organ function, and aortic valve insufficiency. Since the non-physiologic flow characteristic of these devices is one of the main subjects of scientific debate in the literature, we next emphasize the latest research regarding the development of a pulsatile RBP. Finally, we offer an outlook for future research in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clinical importance of pulsatility is a recurring topic of debate in mechanical circulatory support. Lack of pulsatility has been identified as a possible factor responsible for adverse events and has also demonstrated a role in myocardial perfusion and cardiac recovery. A commonly used method for restoring pulsatility with rotodynamic blood pumps (RBPs) is to modulate the speed profile, synchronized to the cardiac cycle. This introduces additional parameters that influence the (un)loading of the heart, including the timing (phase shift) between the native cardiac cycle and the pump pulses, and the amplitude of speed modulation. In this study, the impact of these parameters upon the heart-RBP interaction was examined in terms of the pressure head-flow (HQ) diagram. The measurements were conducted using a rotodynamic Deltastream DP2 pump in a validated hybrid mock circulation with baroreflex function. The pump was operated with a sinusoidal speed profile, synchronized to the native cardiac cycle. The simulated ventriculo-aortic cannulation showed that the level of (un)loading and the shape of the HQ loops strongly depend on the phase shift. The HQ loops displayed characteristic shapes depending on the phase shift. Increased contribution of native contraction (increased ventricular stroke work [WS ]) resulted in a broadening of the loops. It was found that the previously described linear relationship between WS and the area of the HQ loop for constant pump speeds becomes a family of linear relationships, whose slope depends on the phase shift.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Technology assessment is a comprehensive form of policy research that examines the short- and long-term social consequences of the application or use of technology" (US Congress 1967).^ This study explored a research methodology appropriate for technology assessment (TA) within the health industry. The case studied was utilization of external Small-Volume Infusion Pumps (SVIP) at a cancer treatment and research center. Primary and secondary data were collected in three project phases. In Phase I, hospital prescription records (N = 14,979) represented SVIP adoption and utilization for the years 1982-1984. The Candidate Adoption-Use (CA-U) diffusion paradigm developed for this study was germane. Compared to classic and unorthodox curves, CA-U more accurately simulated empiric experience. The hospital SVIP 1983-1984 trends denoted assurance in prescribing chemotherapy and concomitant balloon SVIP efficacy and efficiency. Abandonment of battery pumps was predicted while exponential demand for balloon SVIP was forecast for 1985-1987. In Phase II, patients using SVIP (N = 117) were prospectively surveyed from July to October 1984; the data represented a single episode of therapy. The questionnaire and indices, specifically designed to measure the impact of SVIP, evinced face validity. Compeer group data were from pre-SVIP case reviews rather than from an inpatient sample. Statistically significant results indicated that outpatients using SVIP interacted socially more than inpatients using the alternative technology. Additionally, the hospital's education program effectively taught clients to discriminate between self care and professional SVIP services. In these contexts, there was sufficient evidence that the alternative technology restricted patients activity whereas SVIP permitted patients to function more independently and in a social lifestyle, thus adding quality to life. In Phase III, diffusion forecast and patient survey findings were combined with direct observation of clinic services to profile some economic dimensions of SVIP. These three project phases provide a foundation for executing: (1) cost effectiveness analysis of external versus internal infusors, (2) institutional resource allocation, and (3) technology deployment to epidemiology-significant communities. The models and methods tested in this research of clinical technology assessment are innovative and do assess biotechnology. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agriculture is a major consumer of energy in many countries of the world. Only a few of these countries are self-sufficient in conventional energy sources, which are also exhaustible. Fortunately, there are other sources of energy, such as wind, which has experienced recent developments in the area of wind power generation. From irrigation projects to power supply in remote farms, wind power generation can play a vital role. A simple methodology for technical evaluation of windmills for irrigation water pumping has been developed in this study to determine the feasibility per unit amount of water supplied and the levels of daily irrigation demand satisfied by windmill irrigation system at various levels of risk (probability of failure). For this purpose, a series of three hourly wind-speed data over a period of 38 years at Ciego de Ávila, Cuba, were analyzed to compute the diurnal wind pump discharge at varying levels of risk. The sizes of reservoirs required to modulate fluctuating discharge and to satisfy the levels of irrigation demand, on function of crop development dates, cultivated area and water elevation height, were computed by cumulative deficit water budgeting. An example is given illustrating the use of the methodology on tomato crop Licopersicon esculentum Mill) under greenhouse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crop irrigation is a major consumer of energy. Only a few countries are self-sufficient in conventional non-renewable energy sources. Fortunately, there are renewable ones, such as wind, which has experienced recent developments in the area of power generation. Wind pumps can play a vital role in irrigation projects in remote farms. A methodology based on daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. For this purpose, several factors were included: three-hourly wind velocity (W3 h, m/s), flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration as a function of crop planting date. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. An example is given illustrating the use of this methodology on tomato crop (Lycopersicon esculentum Mill.) under greenhouse at Ciego de Ávila, Cuba. In this case two different W3 h series (average and low wind year), three different H values and five tomato crop planting dates were considered. The results show that the optimum period of wind-pump driven irrigation is with crop plating in November, recommending a 5 m3 volume tank for cultivated areas around 0.2 ha when using wind pumps operating at 15 m of height elevation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology based on daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. For this purpose, several factors were included: three-hourly wind velocity (W3 h, m/s), flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration as a function of crop planting date. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors.