999 resultados para PT-RU ANODES
Resumo:
Since electrode electroactivity and stability depend directly on the nature, morphology, and structure of the material, we have investigated how modifications to the Pechini method during the synthesis of Pt-RuOx/C electrocatalysts affected catalyst activity. The structure and stability of the resulting materials were investigated after their submission to a large number of potential scans and to constant potential for a prolonged time period in sulfuric acid 0.5 mol L-1 and methanol 0.1 mol L-1 solution. DMFC tests were accomplished using membrane electrode assemblies (MEAs) prepared by hot-pressing a pretreated Nafion 117 membrane together with the prepared Pt-RuOx anodes and a Pt cathode (from E-TEK), in order to compare the catalytic activity of the materials prepared by different methods. The stability studies demonstrated that the catalyst whose resin/carbon support mixture was agitated in a balls mill before undergoing heat-treatment was more stable than the other prepared catalysts. The catalysts synthesized with the single resin consisting of Pt and Ru and subjected to ultrasound before heat-treatment furnished the highest power density in the single fuel cell. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.011208jes]
Resumo:
A platinum (Pt) on pure ceria (CeO2) supported by carbon black (CB) anode was synthesized using a combined process of precipitation and coimpregnation methods. The electrochemical activity of methanol oxidation reaction on synthesized Pt-CeO2/CB anodes was investigated by cyclic voltammetry and chronoamperometry experimentation. To improve the anode property on Pt-CeO2/CB, the influence of particle morphology and particle size on anode properties was examined. The morphology and particle size of the pure CeO2 particles could be controlled by changing the preparation conditions. The anode properties (i.e., peak current density and onset potential for methanol oxidation) were improved by using nanosize CeO2 particles. This indicates that a larger surface area and higher activity on the surface of CeO2 improve the anode properties. The influence of particle morphology of CeO2 on anode properties was not very large. The onset potential for methanol oxidation reaction on Pt-CeO2/CB, which consisted of CeO2 with a high surface area, was shifted to a lower potential compared with that on the anodes, which consisted of CeO2 with a low surface area. The onset potential on Pt-CeO2/CB at 60 degrees C became similar to that on the commercially available Pt-Ru/carbon anode. We suggest that the rate-determining steps of the methanol oxidation reaction on Pt-CeO2/CB and commercially available Pt-Ru/carbon anodes are different, which accounts for the difference in performance. In the reaction mechanism on Pt-CeO2/CB, we conclude that the released oxygen species from the surface of CeO2 particles contribute to oxidation of adsorbed CO species on the Pt surface. This suggests that the anode performance of the Pt-CeO2/CB anode would lead to improvements in the operation of direct methanol fuel cells at 80 degrees C by the enhancement of diffusion of oxygen species created from the surface of nanosized CeO2 particles. Therefore, we conclude that fabrication of nanosized CeO2 with a high surface area is a key factor for development of a high-quality Pt-CeO2/CB anode in direct methanol fuel cells.
Resumo:
直接甲醇燃料电池( DMFC )具有甲醇来源丰富,价格低廉,在常温常压下是液体,易于携带储存;体积小,重量轻,结构简单,容易操作;维修方便,价格低等优点,近年来得到普遍的关注。然而,要达到DMFC的商品化还存在一些问题。其中一个是阳极催化剂的电催化活性低和易被甲醇氧化的中间产物,如CO毒化。对于甲醇阳极电催化剂人们进行了大量的研究,比较有效的都是Pt-过渡金属或金属氧化物复合催化剂,如Pt-Ru、 Pt-Sn、Pt佩Rh、Pt-Pd、Pt佩Re、Pt-Ru-Sn-W、Pt-WO。和Pt-TIO。等。本文研究了电解液中的稀土离子和与Pt形成复合催化剂的稀土氧化物对甲醇电催化氧化反应的促进作用,得到了如下的结果:1.电解液中的稀土Ho, Eu, Gd或Dy离子对甲醇在光滑Pt电极或DMFC中使用的Pt/C电极上的电催化氧化反应有促进作用,主要表现在的起始氧化电位负移和氧化电流增加。而电解液中加入其它种类的稀土离子对甲醇在光滑Pt电极或Pt/C电极上的电催化氧化反应有阻碍作用,如起始氧化电位正移,峰电流降低。Fu、H食Dy或Gd离子对一甲醇在Pt上的电催化氧化反应有促进作用的主要原因可能与这些稀土离子与甲醇生成配合物能力有关。2.不同Pt一稀土氧化物/C催化剂对甲醇电催化氧化反应有不同的影响。当稀土氧化物是Eu, Ho, Dy或Gd的氧化物时,甲醇在Pt一稀土氧化物/C催化剂上甲醇电催化氧化反应的极化性能和稳定性要优于在Pt/C催化剂上,而在其它的Pt-稀土氧化物/C催化剂上,甲醇电催化氧化的极化性能和稳定性要差于Pt/C电极。用不同方法制备的Pt一稀土氧化物/C催化剂对甲醇电催化氧化反应的促进作用取决于催化剂的制备方法。如先在活性碳上还原沉积Pt,再沉积上稀土氧化物所得的Pt-稀土氧化物/C催化剂的促进作用要优于先在稀土氧化物上还原沉积Pt,再一起沉积到活性碳上或先再活性碳上沉积稀土氧化物,再还原沉积上Pt的方法。另外,Pt和稀上氧化物的原子比为2:1时,pt-稀土氧化物/c催化剂对甲醇电催化氧化反应的催化活性最佳。稀土氧化物对pt/C催化剂对甲醇氧化反应的电催化性质的影响与稀土离子相似。但用稀土离子的方法比较简便,因此,相比之下,用稀土离子来促进甲醇在Pt上的电催化氧化反应方法较好。3.用Eu, Gd, Dy, Ho的氧化物制得的Pt-稀土氧化物/C复合催化剂对co的电催化氧化反应的催化活性要高于Pt/C催化剂。相对于的情况,在co在Eu, Gd, Dy,Ho的氧化物的Pt/稀土氧化物/C复合催化剂电极上的循环伏安图中,CO的氧化峰峰电位比在Pt/C电极的有不同程度的负移。吸.初步确定了电极和单体电池制备的较好的工艺参数和工作条件。在发明一种薄电极制备方法,确定最佳的电极催化层配方等的基础上,制得的单体电池,在25℃工作时,输出功率密度峰值达到28 mW/cm~2。
Resumo:
引言目前影响质子交换膜燃料电池(PEMFC)迅速发展并商业化的主要问题之一是阳极催化剂抗CO的毒化能力。Pt因其对氢的氧化具有高的催化活性而广泛地用作PEMFC的阳极催化剂,也有人研究将其它金属用于PEMFC阳极催化剂,但催化活性要比Pt低得多[1~4]。而Pt作PEMFC的阳极催化剂一个问题是痕量的CO,如10~100ppm就可以使Pt催化剂中毒[5,6]。现在的PEMFC一般用高压氢作为燃料,有很大的不安全性。人们提出用两种方法来解决这个问题,一是用甲醇、甲烷或汽油现场重整制氢作燃料的方法,但用这种制氢方法制得的氢气中含有大量的CO,即使经过纯化,也会含有ppm级的CO。另一个方法是直接用小分子醇类化合物,如甲醇作燃料,被称为直接醇燃料电池(DAFC)[7~11],但醇类化合物在阳极氧化时会有中间产物,如CO的产生,容易使阳极Pt催化剂中毒。因此,研究抗CO中毒的阳极催化剂已成为PEMFC和DAFC中一个很重要的研究课题。许多文章已报道Pt与其它贵金属或过渡金属的合金催化剂,或Pt与过渡金属氧化物的复合催化剂有一定的抗CO中毒能力。如Pt鄄Ru[12~16]、Pt鄄Bi[17]、Pt鄄Sn[17~19]...
Resumo:
直接甲醇燃料电池(DMFC)由于具有燃料来源丰富、价格低廉、易于携带储存等优点,近年来一直是世界上许多国家研究和开发的热点[1].但是甲醇具有一定的毒性,因此要想实现DMFC在诸如手机、笔记本电脑以及电动车等可移动电源领域的应用,必须探索寻找新的液体燃料以替代有毒性的甲醇.其中乙醇很易从农作物中大量生产,又无毒,因此很有可能用作为替代甲醇作DMFC的燃料.乙醇的电催化氧化已被众多的研究者从电催化和乙醇燃料电池的角度进行了广泛研究[2-7].其中,对乙醇电催化氧化活性较好的有pt[2-4]、pt-Ru[6-7]、Pt-Pd[5]和Pt-Mo[7]等催化剂.我们研究组报道了用固相反应法制得的Pt催化剂对甲醇氧化的电催化活性要优于用常规液
Resumo:
近年来,直接甲醇燃料电池(DMFC)由于使用液体燃料而越来越受到重视,但目前DMFC存在的一个普遍的问题是常用的Pt阳极催化剂易被甲醇氧化的中间产物所毒化.因此,一些研究者研究了能抗甲醇氧化的中间产物毒化的Pt二元合金或Pt和过渡金属氧化物复合催化剂,如Pt-Ru[1]、Pt-Sn[2]、Pt-WOx[3]等.考虑至TiO2在酸性溶液中的稳定性,Hamnett研究组[4]和我们研究组[5]发现pt-TiO2/Ti复合电极对甲醇氧化有很好的电催化活性和抗中毒的能力.本文报道了制备能在DMFC中实际使用的碳载Pt-TiO2催化剂(Pt-TiO2/C)的方法和比较了Pt-TiO2/C和Pt/C电极对甲醇氧化的电催化活性和稳定性.用固相法制备含Pt20%的Pt/C催化剂[6],将制得的pt/C催化剂和Ti(OBu)4按摩尔比1:1的比例悬浮在乙醇中,超声波震荡并加水,使Ti(OBu)4完全水解成TiO2,并均匀沉积到Pt/C催化剂上,洗涤,真空干燥,500℃热处理
Resumo:
We report in this paper the occurrence of potential oscillations in a proton exchange membrane fuel cell (PEMFC) with a Pd-Pt/C anode, fed with H(2)/100 ppm CO, and operated at 30 degrees C. We demonstrate that the use of Pd-Pt/C anode enables the emergence of dynamic instabilities in a PEMFC. Oscillations are characterized by the presence of very high oscillation amplitude, ca. 0.8 V. which is almost twice that observed in a PEMFC with a Pt-Ru/C anode under similar conditions. The effects of the H(2)/CO flow rate and cell current density on the oscillatory dynamics were investigated and the mechanism rationalized in terms of the CO oxidation and adsorption processes. We also discuss the fundamental aspects concerning the operation of a PEMFC under oscillatory regime in terms of the benefit resulting from the higher average power output. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Carbon-supported platinum is commonly used as an anode electrocatalyst in low-temperature fuel cells fueled with methanol. The cost of Pt and the limited world supply are significant barriers for the widespread use of this type of fuel cell. Moreover, Pt used as anode material is readily poisoned by carbon monoxide produced as a byproduct of the alcohol oxidation. Although improvements in the catalytic performance for methanol oxidation were attained using Pt-Ru alloys, the state-of-the-art Pt-Ru catalyst needs further improvement because of relatively low catalytic activity and the high cost of noble Pt and Ru. For these reasons, the development of highly efficient ternary platinum-based catalysts is an important challenge. Thus, various compositions of ternary Pt(x)-(RuO(2)-M)(1-x)/C composites (M = CeO(2), MoO(3), or PbO(x)) were developed and further investigated as catalysts for the methanol electro-oxidation reaction. The characterization carried out by X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry point out that the different metallic oxides were successfully deposited on the Pt/C, producing small and well-controlled nanoparticles in the range of 2.8-4.2 nm. Electrochemical experiments demonstrated that the Pt(0.50)(RuO(2)-CeO(2))(0.50)/C composite displays the higher catalytic activity toward the methanol oxidation reaction (lowest onset potential of 207 mV and current densities taken at 450 mV, which are 140 times higher than those at commercial Pt/C), followed by the Pt(0.75)(RuO(2)-MoO(3))(0.25)/C composite. In addition, both of these composites produced low quantities of formic acid and formaldehyde when compared to a commercially available Pt(0.75)-Ru(0.25)/C composite (from E-Tek, Inc.), suggesting that the oxidation of methanol occurs mainly by a pathway that produces CO(2) forming the intermediary CO(ads).
Resumo:
One of the key objectives in fuel-cell technology is to improve the performance of the anode catalyst for the alcohol oxidation and reduce Pt loading. Here, we show the use of six different electrocatalysts synthesized by the sol -gel method on carbon powder to promote the oxidation of methanol in acid media. The catalysts Pt-PbO(x) and Pt-(RuO(2)-PbO(x)) with 10% of catalyst load exhibited significantly enhanced catalytic activity toward the methanol oxidation reaction as compared to Pt-(RuO(2))/C and Pt/C electrodes. Cyclic voltammetry studies showed that the electrocatalysts Pt-PbO(x)/C and Pt-(RuO(2)-PbO(x))/C started the oxidation process at extremely low potentials and that they represent a good novelty to oxidize methanol. Furthermore, quasi-stationary polarization experiments and cronoamperometry studies showed the good performance of the Pt-PbO(x), Pt-(RuO(2)-PbO(x))/C and Pt-(RuO(2)-IrO(2))/C catalysts during the oxidation process. Thus, the addition of metallic Pt and PbO(x) onto high-area carbon powder, by the sol -gel route, constitutes an interesting way to prepare anodes with high catalytic activity for further applications in direct methanol fuel cell systems.
Resumo:
Pt-modified RuO2 was prepared by a sol-gel procedure on titanium substrates in the form of thin films of similar to2-mum thickness. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that these films actually consist of Pt nanoparticles dispersed in RuO2 and that neither metallic Ru nor Pt-Ru alloy are present on the surface. Electrodes with different Pt:Ru nominal compositions were prepared and their electrocatalytic activity for the oxidation of methanol was investigated by potential sweeps and chronoamperometry. The results obtained show an enhancement effect for methanol oxidation that can be interpreted as associated to the formation of hydrous oxides on the RuO2 surface.
Resumo:
One of the key objectives in fuel cell technology is to reduce Pt loading by the improvement of its catalytic activity towards alcohol oxidation. Here, a sol-gel based method was used to prepare ternary and quaternary carbon supported nanoparticles by combining Pt-Ru with Mo, Ta, Pb, Rh or Ir, which were used as electro-catalysts for the methanol and ethanol oxidation reactions in acid medium. Structural characterization performed by XRD measurements revealed that crystalline structures with crystallites ranging from 2.8 to 4.1 nm in size and with different alloy degrees were produced. Tantalum and lead deposited as a heterogeneous mixture of oxides with different valences resulting in materials with complex structures. The catalysts activities were evaluated by cyclic voltammetry and by Tafel plots and the results showed that the activity towards methanol oxidation was highly dependent of the alloy degree, while for ethanol the presence of a metal capable to promote the break of C-C bond, such as Rh, was necessary for a good performance. Additionally, the catalysts containing of TaOx or PbOx resulted in the best materials due to different effects: the hi-functional mechanism promoted by TaOx and a better dispersion of the catalysts constituents promoted by PbOx. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Oxygen storage/release (OSC) capacity is an important feature common to all three-way catalysts to combat harmful exhaust emissions. To understand the mechanism of improved OSC for doped CeO2, we undertook the structural investigation by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H-2-TPR (temperature-programmed hydrogen reduction) and density functional theoretical (DFT) calculations of transition-metal-, noble-metal-, and rare-earth (RE)-ion-substituted ceria. In this report, we present the relationship between the OSC and structural changes induced by the dopant ion in CeO2. Transition metal and noble metal ion substitution in ceria greatly enhances the reducibility of Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu, Pd, Pt, Ru), whereas rare-earth-ion-substituted Ce(1-x)A(x)O(2-delta) (A = La, Y) have very little effect in improving the OSC. Our simulated optimized structure shows deviation in cation oxygen bond length from ideal bond length of 2.34 angstrom (for CeO2). For example, our theoretical calculation for Ce28Mn4O62 structure shows that Mn-O bonds are in 4 + 2 coordination with average bond lengths of 2.0 and 3.06 angstrom respectively. Although the four short Mn-O bond lengths spans the bond distance region of Mn2O3, the other two Mn-O bonds are moved to longer distances. The dopant transition and noble metal ions also affects Ce coordination shell and results in the formation of longer Ce-O bonds as well. Thus longer cation oxygen bonds for both dopant and host ions results in enhanced synergistic reduction of the solid solution. With Pd ion substitution in Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu) further enhancement in OSC is observed in H-2-TPR. This effect is reflected in our model calculations by the presence of still longer bonds compared to the model without Pd ion doping. The synergistic effect is therefore due to enhanced reducibility of both dopant and host ion induced due to structural distortion of fluorite lattice in presence of dopant ion. For RE ions (RE = Y, La), our calculations show very little deviation of bonds lengths from ideal fluorite structure. The absence of longer Y-O/La-O and Ce-O bonds make the structure much less susceptible to reduction.
Resumo:
为了提高直接甲醇质子交换膜燃料电池阳极催化剂的活性和降低毒化现象,本论文选择并且通过电化学阴极还原一阳极氧化的方法制备了铂修饰的氧化钦电极和铂、钉共修饰的氧化钦电极两种修饰电极,对于甲醇在两种修饰电极上的电催化氧化行为进行了研究;通过化学还原和溶胶一凝胶两步骤法制备了碳载Pt-TiO_2和碳载Pt-Ru-TiO_2复合催化剂,运用测定极化曲线和放电寿命的方法考察了催化剂对于甲醇的电催化氧化活性,研究了热处理条件对催化剂性能的影响佩研究了改变催化剂的组成对性能的影响.通过XPS, XRD,TEM等技术对催化剂性能改进的原因进行了分析,并且对催化剂作用的机理进行了合理的推导.初步研究了几种催化剂对CO的电催化氧化。并得到如下结果: 1.用电化学方法制备的Pt-TiO_x/Ti、Pt-Ru-TM/Ti电极对甲醇的氧化呈现了很好的电催化活性,比相应的Pt和Pt-Ru电极的活性要高出很多。Pt-Ru-Ti电极对甲醇的电催化高于Pt-TiO_x/Ti电极。其中TiO_x是TiO_2和TiO(OH)的混合物,甲醇在Pt-TiO_x/Ti电极和Pt-Ru-TiOX_/Ti电极上氧化的最终产物是CO_2。 Pt-TiO_X/Ti电极对甲醇的氧化呈现了很好的电催化活性的原因之一是Pt和TiO_x粒子之间的很好分散。由于Pt和TiO_x粒子的相互作用,甲醇氧化的中间产物如CO在电极表面的吸附能力大大降低,因此,降低了电极被甲醇氧化的中间产物毒化的可能性,这是Pt-TiO_x/Ti电极对甲醇的氧化呈现了很好的电催化活性的重要原因。由于Pt, Ru, TiO、之间的协同作用,Pt-Ru-TiO_x/Ti电极对甲醇的氧化呈现了比Pt-TiO_x/Ti电极更高的电催化活性。但由于在较高的过电位下,Ru易生成氧化物,并易在酸性溶液中溶解,因此,Pt-Ru-TiO_x/Ti电极最宜在中性溶液中使用修饰电极表面的修饰层由分散度很高的Pt和TiO_x粒子或Pt、Ru和TiO_x粒子组成,高的催化活性是各物种之间协同作用的结果。由于Pt和Ti0:粒子以及Pt, Ru和Ti0:粒子的相互作用,甲醇氧化的中间产物如CO在电极表面的吸附能力大大降低,因此,降低了电极被甲醇氧化的中间产物毒化的可能性。2.通过化学还原和溶胶一凝胶法制备的Pt-TiO_2/C催化剂对甲醇的电催化氧化呈现出了很好的活性和稳定性。这主要是由于Pt和TiO_x之间的协同作用使甲醇氧化的中间产物中的毒化物种易氧化成最终产物的结果。其次是用这种方法制得的Pt-TiO_2/C催化剂中各组分具有较小粒径,并能很好相互分散。另外,催化剂中的Ti和Pt的原子比也有很大的影响,当Ti和Pt的原子比为1/2时,所得的催化剂的性能最好。这是由于合适的Ti和Pt的原子比使Pt和TiO_x产生最佳的协同作用,另外Ti0:的导电性较差要求Pt有较多的含量。在500℃下热处理后,催化剂的性能得到进一步的改善,这是由于热处理使催化剂中Pt金属的含量增加,而R氧化物的含量降低引起的。这种催化剂有望能在DMPEMFC实际使用。用同样方法制备的Pt-Ru-TiO_2/C催化剂对甲醇的电催化氧化呈现出了比Pt-TiO_2/C催化剂更高的活性,但性能提高的不是很多,这主要是由于催化剂中的Ru及其氧化物所起到的作用与TiO_x相似,在催化剂中氧化物的比例较高时,降低了电极的导电性的缘故.Pt-Ru-TiO_2/C催化剂的稳定性不如Pt-TiO_2/C催化剂好,这主要是因为Ru金属及其氧化物在酸性介质中容易溶解,造成这些物种在催化剂中减少,影响到催化剂的性能.3.对于CO电催化氧化研究的结果表明,用电化学阴极还原一阳极氧化法制得的Pt-TiO_x/Ti修饰电极与P七电极相比,对CO氧化的峰电位发生负移,具有更高的催化活性;与Pt/C催化剂相比,由于TiO_x的存在,Pt-TiO_2/C催化剂对于CO氧化的活性得到了提高。
Resumo:
A simple and rapid synthesis method (denoted as modified impregnation method, MI) for PtRu/CNTs (MI) and PtRu/C (MI) was presented. PtRu/CNTs (MI) and PtRu/C (MI) catalysts were characterized by transmission electron microscopy (TEM) and X-ray diffractometry. It was shown that Pt-Ru particles with small average size (2.7 nm) were uniformly dispersed on carbon supports (carbon nanotubes and carbon black) and displayed the characteristic diffraction peaks of Pt face-centered cubic structure.
Resumo:
The hybrid material based on WO3 and Vulcan XC-72R carbon has been used as the support of Pd nano-catalysts. The resultant Pd-WO3/C catalysts in a large range of WO3 content exhibit excellent catalytic activity and stability for formic acid electrooxidation. The great improvement in the catalytic performance is attributed to the uniform dispersion of Pd with less particle sizes on the WO3/C support and the hydrogen spillover effect which greatly accelerates the dehydrogenation of HCOOH on Pd.