958 resultados para PORCINE EMBRYOS
Resumo:
The in vitro development of hamster preimplantation embryos is supported by non-glucose energy substrates. To investigate the importance of embryonic metabolism, influence of succinate and malate on the development of hamster 8-cell embryos to blastocysts was examined using a chemically defined protein-free modified hamster embryo culture medium-2 (HECM-2m). There was a dose-dependent influence of succinate on blastocyst development; 0.5 mM succinate was optimal (85.1% ± 3.9 vs. 54.5% ± 3.5). In succinate-supplemented HECM-2m, blastocyst development was reduced by omission of lactate (68.5% ± 7.2), but not pyruvate (85.8% ± 6.2) or glutamine (84.1% ± 2.1). Succinate along with either glutamine or lactate or pyruvate poorly supported blastocyst development (28%-58%). Malate also stimulated blastocyst development; 0.01 mM malate was optimal (86.3% ± 2.8). Supplementation of both succinate and malate to HECM-2m supported maximal (100%) blastocyst development, which was inhibited 4-fold by the addition of glucose/phosphate. The mean cell numbers (MCN) of blastocysts cultured in succinate-supplemented HECM-2m was higher (28.3 ± 1.1) than it was for those cultured in the absence of glutamine or pyruvate (range 20-24). The MCN was the highest (33.4 ± 1.6) for blastocysts cultured in succinate-malate-supplemented HECM-2m followed by those in succinate (28.3 ± 1.1) or malate (24.7 ± 0.5) supplemented HECM-2m. Embryo transfer experiments showed that 29.8% (±4.5) of transferred blastocysts cultured in succinate-malate-supplemented HECM-2m produced live births, similar (P > 0.1) to the control transfers of freshly recovered 8-cells (33.5% ± 2.0) or blastocysts (28.9% ± 3.0). These data show that supplementation of succinate and malate to HECM-2m supports 100% development of hamster 8-cell embryos to high quality viable blastocysts and that non-glucose oxidizable energy substrates are the most preferred components in hamster embryo culture medium. Mol. Reprod. Dev. 47:440-447, 1997. © 1997 Wiley-Liss, Inc.
Resumo:
A major limitation to progress in primate embryology is the lack of an adequate supply of preimplantation embryos. We describe a method for recovering preimplantation-embryos in bonnet monkeys (Macaca radiata ) using a nonsurgical uterine flushing technique similar to the one previously employed in rhesus monkeys. Forty cyclic females were screened for cervical cannulation, and 10% of these had an impassable cervix. Eleven females suitable for cannulation were selected, and 27 menstrual cycles were monitored over a 5-mo period. Seventy-one percent of the cycles showed estrogen peaks, which were observed between Days 9 and 14 of the cycle. Following natural mating, uterine flushings were performed on Days 5 to 8 of pregnancy (Day 0 = the day following the estrogen peak). Of the 27 recovery attempts, 9 (33.3%) resulted in the recovery of ovulation products, including those of an unfertilized oocyte and empty zona (2 cases), retarded cleavage-stage (4 to 8-cell) embryos (4 cases), morula (1 case) and blastocysts (2 cases). These results show, for the first time, that the nonsurgical uterine flushing technique can be successfully performed to recover uterine-stage preimplantation embryos from bonnet monkeys.
Resumo:
The inßuence of the sperm motility stimulant pentoxifylline (PF) on preimplantation embryo development in hamsters was evaluated. Eight-cell embryos were cultured in hamster embryo culture medium (HECM)-2, with or without PF (0· 0233·6 mM). There was 90%, 37% and 29% inhibition of blastocyst development by 3·6 (used for human sperm), 0·9 and 0 ·45 mM PF, respectively. However, 23 µM PF (exposed to hamster oocytes during IVF) signicantly (P < 0·05) improved blastocyst development (63· 6% v. 51· 8%); morulae development was, however, not curtailed by 0·45 mM or 0·9 mM PF (51·8%±6·0 or 50·5%±11·3, respectively). Post-implantation viability of PF-treated embryos was assessed by embryo transfer; 43% of 80 PF-treated embryos implanted compared with 40% of 79 control embryos. Of the 9 recipients, 6 females delivered pups (19, i.e. 16% of transferred embryos or 53% of implanted embryos). These data show that in hamsters, continuous presence of PF at 0·45-3·6 mM is detrimental to 8-cell embryo development whereas 23 µM PF improves the development of embryos to viable blastocysts which produce live offspring.
Resumo:
F4 fimbriae of enterotoxigenic Escherichia coli (ETEC) are highly stable multimeric structures with a capacity to evoke mucosal immune responses. With these characters F4 offer a unique model system to study oral vaccination against ETEC-induced porcine postweaning diarrhea. Postweaning diarrhea is a major problem in piggeries worldwide and results in significant economic losses. No vaccine is currently available to protect weaned piglets against ETEC infections. Transgenic plants provide an economically feasible platform for large-scale production of vaccine antigens for animal health. In this study, the capacity of transgenic plants to produce FaeG protein, the major structural subunit and adhesin of F4 fimbria, was evaluated. Using the model plant tobacco, the optimal subcellular location for FaeG accumulation was examined. Targeting of FaeG into chloroplasts offered a superior accumulation level of 1% of total soluble proteins (TSP) over the other investigated subcellular locations, namely, the endoplasmic reticulum and the apoplast. Moreover, we determined whether the FaeG protein, when isolated from its fimbrial background and produced in a plant cell, would retain the key properties of an oral vaccine, i.e. stability in gastrointestinal conditions, binding to porcine intestinal F4 receptors (F4R), and inhibition of the F4-possessing (F4+) ETEC attachment to F4R. The chloroplast-derived FaeG protein did show resistance against low pH and proteolysis in the simulated gastrointestinal conditions and was able to bind to the F4R, subsequently inhibiting the F4+ ETEC binding in a dose-dependent manner. To investigate the oral immunogenicity of FaeG protein, the edible crop plant alfalfa was transformed with the chloroplast-targeting construct and equally to tobacco plants, a high-yield FaeG accumulation of 1% of TSP was obtained. A similar yield was also obtained in the seeds of barley, a valuable crop plant, when the FaeG-encoding gene was expressed under an endosperm-specific promoter and subcellularly targeted into the endoplasmic reticulum. Furthermore, desiccated alfalfa plants and barley grains were shown to have a capacity to store FaeG protein in a stable form for years. When the transgenic alfalfa plants were administred orally to weaned piglets, slight F4-specific systemic and mucosal immune responses were induced. Co-administration of the transgenic alfalfa and the mucosal adjuvant cholera toxin enhanced the F4-specific immune response; the duration and number of F4+ E. coli excretion following F4+ ETEC challenge were significantly reduced as compared with pigs that had received nontransgenic plant material. In conclusion, the results suggest that transgenic plants producing the FaeG subunit protein could be used for production and delivery of oral vaccines against porcine F4+ ETEC infections. The findings here thus present new approaches to develop the vaccination strategy against porcine postweaning diarrhea.
Resumo:
Direct regeneration of somatic embryos was obtained from immature zygotic embryos of Dalbergia latifolia. Immature embryos dissected from green pods 90 d after flowering gave the highest frequency of somatic embryo formation. Preculture on high 2,4-D medium for 4 weeks induced direct somatic embryogenesis, which was expressed during the second culture phase in the presence of low 2,4-D along with a high sucrose concentration. Embryos were separated and transferred to the maturation medium containing MS + 0.5-1.0 mg/L BAP, where embryos developed into plantlets. Somatic embryos failed to convert into complete plants without BAP treatment. This method of direct regeneration of somatic embryos without a callus phase has direct application for genetic manipulation studies.
Resumo:
Cardiac surgery involving cardiopulmonary bypass (CPB) induces activation of inflammation and coagulation systems and is associated with ischemia-reperfusion injury (I/R injury)in various organs including the myocardium, lungs, and intestine. I/R injury is manifested as organ dysfunction. Thrombin, the key enzyme of coagulation , plays a cenral role also in inflammation and contributes to regulation of apoptosis as well. The general aim of this thesis was to evaluate the potential of thrombin inhibition in reducing the adverse effects of I/R injury in myocardium, lungs, and intestine associated with the use of CPB and cardiac surgery. Forty five pigs were used for the studies. Two randomized blinded studies were performed. Animals underwent 75 min of normothermic CPB, 60 min of aortic clamping, and 120 min of reperfusion period. Twenty animals received iv. recombinant hirudin, a selective and effective inbitor of thrombin, or placebo. In a similar setting, twenty animals received an iv-bolus (250 IU/kg) of antithrombin (AT) or placebo. An additional group of 5 animals received 500 IU/kg in an open label setting to test dose response. Generation of thrombin (TAT), coagulation status (ACT), and hemodynamics were measured. Intramucosal pH and pCO2 were measured from the luminal surface of ileum using tonometry simultaneusly with arterial gas analysis. In addition, myocardial, lung, and intestinal biopsies were taken to quantitate leukocyte infiltration (MPO), for histological evaluation, and detection of apoptosis (TUNEL, caspase 3). In conclusion, our data suggest that r-hirudin may be an effective inhibitor of reperfusion induced thrombin generation in addition to being a direct inhibitor of preformed thrombin. Overall, the results suggest that inhibition of thrombin, beyond what is needed for efficient anticoagulation by heparin, has beneficial effects on myocardial I/R injury and hemodynamics during cardiac surgery and CPB. We showed that infusion of the thrombin inhibitor r-hirudin during reperfusion was associated with attenuated post ischemia left ventricular dysfunction and decreased systemic vascular resistance. Consequently microvascular flow was improved during ischemia-reperfusion injury. Improved recovery of myocardium during the post-ischemic reperfusion period was associated with significantly less cardiomyocyte apoptosis and with a trend in anti-inflammatory effects. Thus, inhibition of reperfusion induced thrombin may offer beneficial effects by mechanisms other than direct anticoagulant effects. AT, in doses with a significant anticoagulant effect, did not alleviate myocardial I/R injury in terms of myocardial recovery, histological inflammatory changes or post-ischemic troponin T release. Instead, AT attenuated reperfusion induced increase in pulmonary pressure after CPB. Taken the clinical significance of postoperative pulmonary hemodynamics in patients undergoing cardiopulmonary bypass, the potential positive regulatory role of AT and clinical implications needs to be studied further. Inflammatory response in the gut wall proved to be poorly associated with perturbed mucosal perfusion and the animals with the least neutrophil tissue sequestration and I/R related histological alterations tended to have the most progressive mucosal hypoperfusion. Thus, mechanisms of low-flow reperfusion injury during CPB can differ from the mechanisms seen in total ischemia reperfusion injury.
Resumo:
Heart failure is a common and highly challenging medical disorder. The progressive increase of elderly population is expected to further reflect in heart failure incidence. Recent progress in cell transplantation therapy has provided a conceptual alternative for treatment of heart failure. Despite improved medical treatment and operative possibilities, end-stage coronary artery disease present a great medical challenge. It has been estimated that therapeutic angiogenesis would be the next major advance in the treatment of ischaemic heart disease. Gene transfer to augment neovascularization could be beneficial for such patients. We employed a porcine model to evaluate the angiogenic effect of vascular endothelial growth factor (VEGF)-C gene transfer. Ameroid-generated myocardial ischemia was produced and adenovirus encoding (ad)VEGF-C or β-galactosidase (LacZ) gene therapy was given intramyocardially during progressive coronary stenosis. Angiography, positron emission tomography (PET), single photon emission computed tomography (SPECT) and histology evidenced beneficial affects of the adVEGF-C gene transfer compared to adLacZ. The myocardial deterioration during progressive coronary stenosis seen in the control group was restrained in the treatment group. We observed an uneven occlusion rate of the coronary vessels with Ameroid constrictor. We developed a simple methodological improvement of Ameroid model by ligating of the Ameroid–stenosed coronary vessel. Improvement of the model was seen by a more reliable occlusion rate of the vessel concerned and a formation of a rather constant myocardial infarction. We assessed the spontaneous healing of the left ventricle (LV) in this new model by SPECT, PET, MRI, and angiography. Significant spontaneous improvement of myocardial perfusion and function was seen as well as diminishment of scar volume. Histologically more microvessels were seen in the border area of the lesion. Double staining of the myocytes in mitosis indicated more cardiomyocyte regeneration at the remote area of the lesion. The potential of autologous myoblast transplantation after ischaemia and infarction of porcine heart was evaluated. After ligation of stenosed coronary artery, autologous myoblast transplantation or control medium was directly injected into the myocardium at the lesion area. Assessed by MRI, improvement of diastolic function was seen in the myoblast-transplanted animals, but not in the control animals. Systolic function remained unchanged in both groups.
Resumo:
The in vitro incorporation of [3H]uridine into RNA and [3H]leucine into protein in slices of porcine thyroid was studied. Thyrotropin (10-500 mU/ml of medium), when added with [3H]uridine, inhibited incorporation into RNA, but as little as 10 mU of thyrotropin per ml stimulated incorporation of [3H]orotic acid into RNA. Uridine kinase (EC 2.7.1.48) was found to be inhibited in slices incubated with thyrotropin whereas UMP 5′ nucleotidase (EC 2.1.3.5) was not. Preincubation of slices with thyrotropin (5-50 mU/ml) led to enhanced incorporation of subsequently added [3H]uridine and [3H]leucine. When slices were preincubated with long-acting thyroid stimulator-IgG (2.5 or 5 mg per ml of medium) incorporation of [3H]uridine and [3H]leucine was similarly enhanced, with the smaller concentration being more effective. Without preincubation these stimulatory effects were mimicked by 1 mM dibutyryl 3′,5′-AMP and, to a lesser extent, 1 mM 3′,5′-AMP. AMP and ATP also stimulated [3H]uridine incorporation in this system but only after more prolonged periods of incubation than were required for the other nucleotides. RNA polymerase (EC 2.7.7.6) activity measured in isolated thyroid nuclei had two components, one Mg2+-stimulated and the other requ ring Mn2+ and high salt content [0.4 M (NH4)2SO4]. These activities, and particularly the former, were enhanced if thyroid slices were incubated with thyrotropin (5-100 mU/ml of medium), 2.5 mg or 5.0 mg of long-acting thyroid stimulator-IgG per ml, or 1 mM dibutyryl 3′,5′-AMP, before isolatior of the nuclei and measurement of enzyme activities; 1 mM AMP, ADP, or 2′,3′-GMP had no influence. Added directly to the nuclei, thyrotropin, long-acting thyroid stimulator-IgG, and dibutyryl 3′,5′-AMP had no effect on RNA polymerase activities. These data are seen as affording evidence for mediation by 3′,5′-AMP of effects of thyrotropin and long-acting thyroid stimulator on thyroid RNA and protein synthesis, at least in part through an indirect stimulation of nuclear RNA polymerase activities.
Resumo:
Direct somatic embryogenesis from isolated intact as well as broken zygotic embryos and in vitro plantlets of nutmeg (Myristica fragrans Houtt.) was obtained. Enhanced embryogenic response was associated with broken zygotic embryos. Activated charcoal and light were the critical factors for induction of somatic embryogenesis in nutmeg. Histological evaluation revealed the presence of globular and cotyledonary stages. The somatic embryos underwent partial germination after a six-month lag period. A wide range of abnormal embryos were observed. The somatic embryos synthesised chlorophyll, exhibited phenylalanine ammonia lyase activity, synthesised phenolics, and could serve as a stable source of secondary metabolites of nutmeg which are commercially important.
Resumo:
The presence of a gonadotropin receptor binding inhibitor in pooled porcine follicular fluid has been demonstrated. Porcine follicular fluid fractionation on DE-32 at near neutral pH, followed by a cation exchange chromatography on SPC-50 and Cibacron blue affinity chromatography, yielded a partially purified gonadotropin receptor binding inhibitor (GI-4). The partially purified GI binding inhibitor inhibited the binding of both 125I labelled hFSH and hCG to rat ovarian receptor preparation. SDS electrophoresis of radioiodinated partially purified GI followed by autoradiography made it possible to identify the binding component as a protein of molecular weight of 80000. Subjecting 125I labelled GI-4 to chromatography on Sephadex G-100 helped obtain a homogeneous material, Gl-5. The 125I labelled GI-5 exhibited in its binding to ovarian membrane preparations characteristics typical of a ligand-receptor interaction such as saturability, sensitivity to reaction conditions as time, ligand and receptor concentrations and finally displaceability by unlabelled inhibitor as well as FSH and hCG in a dose dependent manner. This material could bind ovarian receptors for both FSH and LH, its binding being inhibited by added FSH or hCG in a dose dependent manner.
Resumo:
We reported the presence of a 80 kDa polypeptide in porcine follicular fluid that inhibited the binding of 125I-radiolabelled hFSH as well as hCG to the rat ovarian gonadotropin receptors. In the present study, the biological activity of the receptor binding inhibitor is determined using an in vitro bioassay procedure. Granulosa cells isolated from PMSG primed immature rat ovaries respond to exogenously added gonadotropins in terms of progesterone production. Addition of fractions containing the gonadotropin receptor binding inhibitory activity inhibited progesterone production stimulated by the gonadotropins in a dose-dependent fashion. The receptor binding inhibitory activity was also capable of inhibiting progesterone production stimulated by PMSG, which has both FSH- and LH-like activities in rats. In contrast, progesterone production stimulated by dbcAMP was not inhibited by the receptor binding inhibitor. This result indicates that the site of action of the inhibitor is proximal to the formation of the cAMP. The above observations point out to a possible role for this factor in modulating gonadotropin activity at the ovarian level.
Resumo:
Chorionic gonadotrophin (CG) is the first clear embryonic signal during early pregnancy in primates. CG has close structural and functional similarities to pituitary luteinizing hormone (LH) which is regulated by gonadotrophin releasing hormone (GnRH). To study the regulatory mechanism of CG secretion in primate embryos, we examined the production and timing of secretion of GnRH in peri-implantation embryos of the rhesus monkey. In-vivo fertilized/developed morulae and early blastocysts, recovered from non-superovulated, naturally-bred rhesus monkeys by non-surgical uterine flushing, were cultured in vitro to hatched, attached and post-attached blastocyst stages using a well-established culture system. We measured GnRH and CG in media samples from cultured embryos with a sensitive radioimmunoassay and bioassay, respectively. The secretion of GnRH (pg/ml; mean +/- SEM) by embryos (n = 20) commenced from low levels (0.32 +/- 0.05) during the pre-hatching blastocyst stage to 0.70 +/- 0.08 at 6-12 days and 1.30 +/- 0.23 at greater than or equal to 13 days of hatched blastocyst attachment and proliferation of trophoblast cells. GnRH concentrations in culture media obtained from embryos (n = 5) that failed to hatch and attach were mostly undetectable (less than or equal to 0.1). Samples that did not contain detectable GnRH failed to show detectable CG. Immunocytochemical studies, using a specific monoclonal anti-GnRH antibody (HU4H) as well as polyclonal antisera (LR-1), revealed that immunopositive GnRH cells were localized in pre-hatching blastocysts (n = 4), in blastocysts (n = 2) after 5-10 days of attachment and in monolayer cultures (n = 4) of well-established embryonic trophoblast cells. GnRH positive staining was seen only in cytotrophoblasts but not in syncytiotrophoblasts. Similarly, cytotrophoblast, but not syncytiotrophoblast, cells of the rhesus placenta were immunopositive. In controls, either in the absence of antibody or in the presence of antibody pre-absorbed with GnRH, these cells failed to show stain. These observations indicate, for the first time, that an immunoreactive GnRH is produced and secreted by blastocysts during the peri-attachment period and by embryo-derived cytotrophoblast cells in the rhesus monkey.