995 resultados para POLYMER NANOFIBERS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospun polyaniline nanofibers are one of the most promising materials for cardiac tissue engineering due to their tunable electroactive properties. Moreover, the biocompatibility of polyaniline nanofibes can be improved by grafting of adhesive peptides during the synthesis. In this paper, we describe the biocompatible properties and cardiomyocytes proliferation on polyaniline electrospun nanofibers modified by hyperbranched poly-L-lysine dendrimers (HPLys). The microstructure characterization of the HPLys/polyaniline nanofibers was carried out by scanning electron microscopy (SEM). It was observed that the application of electrical current stimulates the differentiation of cardiac cells cultured on the nanofiber scaffolds. Both electroactivity and biocompatibility of the HPLys based nanofibers suggest the use this material for culture of cardiac cells and opens the possibility of using this material as a biocompatible electroactive 3-D matrix in cardiac tissue engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal behavior of PANI nanofibers doped with beta-naphthalenesulfonic acid (beta-NSA) was investigated and their morphological and structural changes after heating were monitored by SEM, XRD and Raman techniques, respectively. By using electron-scanning microscopy it is possible to verify that the nanofiber morphology is stable and no polymer degradation is observed in thermogravimetric (TG) data up to 200 degrees C. Nevertheless, the heating promotes the formation of cross-linking structures (phenazine and/or oxazine-like rings), that is clearly demonstrated by the presence of bands at ca. 578, 1398, and 1644 cm(-1) in resonance Raman spectra of heated PANI-NSA samples. The most important consequence of the formation of cross-linking structures in PANI-NSA samples is that these samples retain their nanofiber morphology upon HCl doping in contrast to PANI-NSA nanofibers without heating. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A crosslink-able elastomeric polyester urethane (PEU) was blended with a thermoplastic, polyacrylonitrile (PAN), and electrospun into nanofibres. The effects of the PEU/PAN ratio and the crosslinking reaction on the morphology and the tensile properties of the as-spun fibre mats were investigated. With the same overall polymer concentration (9 wt %), the nanofibre containing higher composition of PEU shows a slight decrease in the average fibre diameter, but the tensile strength, the elongation at break and tensile modulus of the nanofibre mats are all improved. These tensile properties are further enhanced by slight crosslinking of the PEU component within the nanofibres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymeric nanofiber non-woven materials produced by electrospinning have extremely high surface-to-mass (or volume) ratio and a porous structure with excellent pore-interconnectivity. These characteristics plus the functionalities and surface chemistry of the polymer itself impart the nanofibers with desirable properties for a range of advanced applications. This review summarizes the recent progress in electrospun nanofibers, with an emphasis on their applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyvinyl alcohol (PVA) nanofibers and single-walled carbon nanotube (SWNT)/PVA composite nanofibers have been produced by electrospinning. An apparent increase in the PVA crystallinity with a concomitant change in its main crystalline phase and a reduction in the crystalline domain size were observed in the SWNT/PVA composite nanofibers, indicating the occurrence of a SWNT-induced nucleation crystallization of the PVA phase. Both the pure PVA and SWNT/PVA composite nanofibers were subjected to the following post-electrospinning treatments: (i) soaking in methanol to increase the PVA crystallinity, and (ii) cross-linking with glutaric dialdehyde to control the PVA morphology. Effects of the PVA morphology on the tensile properties of the resultant electrospun nanofibers were examined. Dynamic mechanical thermal analyses of both pure PVA and SWNT/PVA composite electrospun nanofibers indicated that SWNT–polymer interaction facilitated the formation of crystalline domains, which can be further enhanced by soaking the nanofiber in methanol and/or cross-linking the polymer with glutaric dialdehyde.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospinning is a very useful technique to produce polymeric nanofibers. It involves fast-drawing a polymer fluid into nanofibers under a strong electric filed, and depositing randomly on an electrode collector to form non-woven nanofiber mat in most cases [1]. The fibre stretching during electrospinning is a fast and incessant process which can be divided into three consecutive stages: jet initiation, whipping instability and fibre deposition. From the initial jet to dry fibres, the fibre stretching takes place in milliseconds, so it has been hardly so far to observe fiber morphology changes by any normal methods, such as high speed photography [2-5]. In this study, we used a facile and practical approach to realize the observation of nanofiber morphology changes during electrospinning. Through a special collection device with coagulation bath, newly electrospun nanofibers can be solidified at different electro spinning distances, and by associating the fiber morphology with the electrospinning distance (d), the morphological evolution of nanofibers can be established. We used polyacrylonitrile (PAN) and polystyrene (PS) as two model polymers to demonstrate this method in present research. From experimental results, we found the massive jet-thinning happens at the initial stage of the process. The formation of uniform PAN nanofibers (7%) and the beads structure changes on beads-on-string PAN nanofibers (5%) have also been successful observed. Using the same method, we also observed PS nanofiber (10%) morphology changes to understand the beads formation 011 nanofibers during electrospinning process, and how the beads was eliminated when ionic surfactant is added into the PS solution for electrospinning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we have demonstrated a novel needleless electrospinning of PVA nanofibers by using a conical metal wire-coil as spinneret. Multiple polymer jets were observed to generate on the coil surface. Up to 70 kV electric voltage can be applied to this needleless electrospinning nozzle without causing corona discharge. Compared with conventional needle electrospinning, this needleless electrospinning system produced finer nanofibers on a much larger scale, and the fiber processing ability showed a much greater dependence on the applied voltage. Finite element calculation indicates that the electric field intensity profiles for the two systems are also quite different. This novel concept of using wire coil as the electrospinning nozzle will contribute to the further development of new large-scale needleless electrospinning system for nanofiber production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Well-aligned nanofibers were prepared from a conjugated polymer, poly(triphenylamine-alt-biphenylene vinylene) (TPA-PBPV), using a solution-assisted template wetting technique. TPA-PBPV was also coated on the surface of electrospun polyacrylonitrile (PAN) nanofiber nonwoven membrane. The extremely large surface area, highly porous fibrous structure, optical scattering and evanescent-wave guiding effect imparted these one-dimensional (1D) nanofibrous materials with highly improved sensory ability to 2,4,6-trinitrotoluene (TNT) vapors and higher quenching efficiency than that of the neat TPA-PBPV films. The results suggest that nanofibrous structures could be a promising strategy to improve the sensory efficiency of fluorescent chemosensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafine polystyrene (PS) nanofibers were prepared via the simple electrospinning technique. Uniform and smooth PS nanofibers were obtained with adding the organic salt BTEAC into the PS solutions and adjusting the concentration of PS solutions. Without the addition of BTEAC, PS fibers with few beads could be achieved with a PS mass fraction of 20%, and the average diameter of the fibers was 280 nm. The addition of the organic salt BTEAC could lower the critical concentration for the fiber formation and reduce the amount of beads on the fibers. Unltrafine PS fibers without any beads were obtained with a PS mass fraction of 10% and an ionic salt mass fraction of 0.5%. The average diameter of the fiber was successfully reduced to 100 nm. The influence of the salt concentration on the morphology and diameter of the PS fibers was also investigated. The viscosity and surface tension changes were measured with changing the concentration of BTEAC. The results show that the changes were so small that these factors could be ignored. It was suggested that variations of the fiber diameter should be mainly resulted from the changes of conductivity and conformation of the polymer chain as the concentration of BTEAC is varied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Au-doped polyacrylonitrile–polyaniline core–shell nanofibers are fabricated via electrospinning and subsequent gas-phase polymerization, providing a very high field-effect mobility of up to 11.6 cm2 V−1 s−1. This method is also suitable for other conducting polymers and may eventually lead to a new and simplified fabrication of high-performance polymer organic field-effect transistors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we have demonstrated that a rotating metal wire coil can be used as a nozzle to electrospin nanofibers on a large-scale. Without using any needles, the rotating wire coil, partially immersed in a polymer solution reservoir, can pick up a thin layer of charged polymer solution and generate a large number of nanofibers from the wire surface simultaneously. This arrangement significantly increases the nanofiber productivity. The fiber productivity was found to be determined by the coil dimensions, applied voltage and polymer concentration. The dependency of fiber diameter on the polymer concentration showed a similar trend to that for a conventional electrospinning system using a syringe needle nozzle, but the coil electrospun fibers were thinner with narrower diameter distribution. The profiles of electric field strength in the coil electrospinning was calculated and showed concentrated electric field intensity on the top wire surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mass production of nanofibers is crucial in both laboratory research and industry application of nanofibers. In this study, multiple ring spinnerets have been used to generate needleless electrospinning. Multiple polymer jets were produced from the top of each ring in the spinning process, resulting in thin and uniform nanofibers. Production rate of nanofibers increased gradually with the increase of the number of rings in the spinneret. Spinning performance of multiple ring electrospinning, namely the quality and production rate of the as-spun nanofibers, was dependent on experimental parameters like applied voltage and polymer concentration. Electric field analysis of multiple ring showed that high concentrated electric field was formed on the surface of each ring. Fiber diameter together with production rate of needleless electrospinning was dependent on the strength and distribution of the electric field of the spinneret. Needleless electrospinning from multiple ring can be further applied in both laboratory research and industry where large amount of nanofibers must be employed simultaneously. © 2014 The Korean Fiber Society and Springer Science+Business Media Dordrecht.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present H2 gas sensors based on hollow and filled, well-aligned electrospun SnO2 nanofibers, operating at a low temperature of 150 C. SnO2 nanofibers with diameters ranging from 80 to 400 nm have been successfully synthesized in which the diameter of the nanofibers can be controlled by adjusting the concentration of polyacrylonitrile in the solution for electrospinning. The presence of this polymer results in the formation of granular walls for the nanofibers. We discussed the correlation between nanofibers morphology, structure, oxygen vacancy contents and the gas sensing performances. X-ray photoelectron spectroscopy analysis revealed that the granular hollow SnO2 nanofibers, which show the highest responses, contain a significant number of oxygen vacancies, which are favorable for gas sensor operating at low temperatures. © 2014 American Chemical Society.