406 resultados para PEPPER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate wound contraction and the concentration of mast cells in skin wounds treated with 5% BPT essential oil-based ointment in rats. METHODS: Twenty rats, male, of adult age, were submitted to skin surgery on the right (RA) and left antimeres (LA) of the thoracic region. They were divided into two groups: control (RA - wounds receiving daily topical application of vaseline and lanolin) and treated (LA - wounds treated daily with the topical ointment). The skin region with wounds were collected at days 4, 7, 14 and 21 after surgery. Those were fixed in 10% formaldehyde and later processed for paraffin embedding. Sections were obtained and stained by H.E for histopathology analysis. The degree of epithelial contraction was measured and mast cell concentration were also evaluated. RESULTS: The treated group showed higher mast cell concentrations (p<0.05) associated with increased contraction at day 7 and 14 respectively. CONCLUSION: Ointment containing 5% Brazilian pepper tree oil increases mast cell concentration and promotes skin wound contraction in rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The greenhouse production associated with the fertigation management, have established in Brazil as economical alternative for several horticultural species. With this strategy this study had as aim to evaluate possible impacts in the metabolism of plants of bell pepper (Capsicum annuum L.; cv Elisa) in response to the increase of mineral concentration in the soil. During the experiments, the some nutrient concentrations were altered, to obtain high values of electric conductivity (EC) in the soil solution. The EC values commonly observed in the traditional fertigation system were adopted, as control. It was also verified the possibility of reduction of the mineral stress impact by the application of organic matter in the soil. Parameters of the antioxidative response system, as the superoxide dismutase (SOD) and catalase enzyme activities besides the proline content were evaluated to measure the extension of the saline stress and their effects on the plants. The increase of EC of the soil induced to the increase of the proline concentration and the SOD activity. Unexpectedly, it was verified that the saline stress inhibited the activity of the enzyme catalase. It was also concluded that the monitoring of EC of the soil is an indispensable tool to reach success in the fertigation system and that the study of the activity of the enzymes of the antioxidative response system, and the proline contents can be assumed as indicators in of the levels of stress in bell pepper plants (Capsicum annuum L.; cv Elisa).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetradifon, a potentially carcinogenic and mutagenic pesticide, can contribute to environmental and human contamination when applied to green bell pepper crops. In this context, in this work, a reliable and sensitive method for determination of tetradifon in Brazilian green bell pepper samples involving a differential pulse voltammetry (DPV) technique on a glassy carbon electrode is proposed. The electrochemical behavior of tetradifon as followed by cyclic voltammetry (CV) suggests that its reduction occurs via an irreversible five-electron transfer vs. Ag vertical bar AgCl, KCl 3 M reference electrode. Very well-resolved diffusion controlled voltammetric peaks have been obtained in a supporting electrolyte solution composed of a mixture of 40% dimethylformamide (DMF), 30% methanol, and 30% NaOH 0.3 mol L-1 at -1.43, -1.57, -1.73, -1.88, and -2.05 V. The proposed DPV method has a good linear response in the 3.00 - 10.0 mu mol L-1 range, with a limit of detection (L.O.D) of 0.756 mu mol L-1 and 0.831 mu mol L-1 in the absence and in the presence of the matrix, respectively. Moreover, improved L.O.D results (0.607 mu mol L-1) have been achieved in the absence of DMF from the supporting electrolyte solution. Recovery has been evaluated in five commercial green bell pepper samples, and recovery percentages ranging from 91.0 to 109 have been obtained for tetradifon determinations. The proposed voltammetric method has also been tested for reproducibility, repeatability, and potential interferents, and the results obtained for these three analytical parameters are satisfactory for electroanalytical purposes. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.024207jes] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host's root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. Results: The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant's root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. Conclusions: This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Known as the "king of spices", black pepper (Piper nigrum), a perennial crop of the tropics, is economically the most important and the most widely used spice crop in the world. To understand its suitable bioclimatic distribution, maximum entropy based on ecological niche modeling was used to model the bioclimatic niches of the species in its Asian range. Based on known occurrences, bioclimatic areas with higher probabilities are mainly located in the eastern and western coasts of the Indian Peninsula, the east of Sumatra Island, some areas in the Malay Archipelago, and the southeast coastal areas of China. Some undocumented places were also predicted as suitable areas. According to the jackknife procedure, the minimum temperature of the coldest month, the mean monthly temperature range, and the precipitation of the wettest month were identified as highly effective factors in the distribution of black pepper and could possibly account for the crop's distribution pattern. Such climatic requirements inhibited this species from dispersing and gaining a larger geographical range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pink peppers, also known as "pimenta-rosa" and "poivre rose", are the fruit of Schinus terebinthifolius Raddi, a species of pepper cultivated in Brazil, and have great potential for the exploration of uses. In efforts to lengthen the shelf life of this pepper, the purpose of this study was to evaluate the effect of different doses of radiation on its physical composition and color. The pink pepper samples were irradiated with doses of 0, 0.2, 0.4, 0.8 and 1.6 kGy, and the moisture, ash and lipid contents, pH and color were analyzed. The moisture content, lipid content and pH analysis indicated effects due to the irradiation (p > 0.05) in which the higher doses resulted in decreases in the attribute. In contrast, there were no significant differences for the ash analysis (p < 0.05) among the studied doses. The color of the pink peppers were affected by the irradiation: the parameters a* and b* were the most affected by the intermediate doses (0.2 and 0.8 kGy), which induced their elevation, enhancing the reddish and yellowish colors. Based on the presented data, irradiation is as an alternative preservation process for pink peppers. (C) 2012 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To report a case of conjunctival proliferation in a 2.5-year-old boy after initial evidence of a mild chemical injury after ocular exposure to pepper spray (oleoresin capsicum). METHODS Case report with ophthalmologic and histologic findings. RESULTS A child presented with mild conjunctival injection and chemosis without any corneal erosion after direct exposure to pepper spray. Three weeks later, a significant conjunctival proliferation was found at the limbus, which was refractory to treatment with topical corticosteroids. Finally, proliferative tissue was surgically excised without clinical recurrence during 2 months of follow-up. CONCLUSIONS We hypothesize that the young age of the patient may have been an important factor for the severe conjunctival proliferation in comparison to a mainly uncomplicated course of pepper spray injuries in most adults. We recommend the use of topical antiinflammatory treatment even in apparently mild pepper spray injuries, especially in young children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pepper (Capsicum annuum) serotonin N-hydroxycinnamoyltransferase (SHT) catalyzes the synthesis of N-hydroxycinnamic acid amides of serotonin, including feruloylserotonin and p-coumaroylserotonin. To elucidate the domain or the key amino acid that determines the amine substrate specificity, we isolated a tyramine N-hydroxycinnamoyltransferase (THT) gene from pepper. Purified recombinant THT protein catalyzed the synthesis of N-hydroxycinnamic acid amides of tyramine, including feruloyltyramine and p-coumaroyltyramine, but did not accept serotonin as a substrate. Both the SHT and THT mRNAs were found to be expressed constitutively in all pepper organs. Pepper SHT and THT, which have primary sequences that are 78% identical, were used as models to investigate the structural determinants responsible for their distinct substrate specificities and other enzymatic properties. A series of chimeric genes was constructed by reciprocal exchange of DNA segments between the SHT and THT cDNAs. Functional characterization of the recombinant chimeric proteins revealed that the amino acid residues 129 to 165 of SHT and the corresponding residues 125 to 160 in THT are critical structural determinants for amine substrate specificity. Several amino acids are strongly implicated in the determination of amine substrate specificity, in which glycine-158 is involved in catalysis and amine substrate binding and tyrosine-149 plays a pivotal role in controlling amine substrate specificity between serotonin and tyramine in SHT. Furthermore, the indisputable role of tyrosine is corroborated by the THT-F145Y mutant that uses serotonin as the acyl acceptor. The results from the chimeras and the kinetic measurements will direct the creation of additional novel N-hydroxycinnamoyltransferases from the various N-hydroxycinnamoyltransferases found in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site–leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strains of Xanthomonas campestris pv. vesicatoria (Xcv) carrying avrBs2 are specifically recognized by Bs2 pepper plants, resulting in localized cell death and plant resistance. Agrobacterium-mediated transient expression of the Xcv avrBs2 gene in plant cells results in Bs2-dependent cell death, indicating that the AvrBs2 protein alone is sufficient for the activation of disease resistance-mediated cell death in planta. We now provide evidence that AvrBs2 is secreted from Xcv and that secretion is type III (hrp) dependent. N- and C-terminal deletion analysis of AvrBs2 has identified the effector domain of AvrBs2 recognized by Bs2 pepper plants. By using a truncated Pseudomonas syringae AvrRpt2 effector reporter devoid of type III signal sequences, we have localized the minimal region of AvrBs2 required for type III secretion in Xcv. Furthermore, we have identified the region of AvrBs2 required for both type III secretion and translocation to host plants. The mapping of AvrBs2 sequences sufficient for type III delivery also revealed the presence of a potential mRNA secretion signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chloroplast to chromoplast development involves new synthesis and plastid localization of nuclear-encoded proteins, as well as changes in the organization of internal plastid membrane compartments. We have demonstrated that isolated red bell pepper (Capsicum annuum) chromoplasts contain the 75-kD component of the chloroplast outer envelope translocon (Toc75) and are capable of importing chloroplast precursors in an ATP-dependent fashion, indicating a functional general import apparatus. The isolated chromoplasts were able to further localize the 33- and 17-kD subunits of the photosystem II O2-evolution complex (OE33 and OE17, respectively), lumen-targeted precursors that utilize the thylakoidal Sec and ΔpH pathways, respectively, to the lumen of an internal membrane compartment. Chromoplasts contained the thylakoid Sec component protein, cpSecA, at levels comparable to chloroplasts. Routing of OE17 to the lumen was abolished by ionophores, suggesting that routing is dependent on a transmembrane ΔpH. The chloroplast signal recognition particle pathway precursor major photosystem II light-harvesting chlorophyll a/b protein failed to associate with chromoplast membranes and instead accumulated in the stroma following import. The Pftf (plastid fusion/translocation factor), a chromoplast protein, integrated into the internal membranes of chromoplasts during in vitro assays, and immunoblot analysis indicated that endogenous plastid fusion/translocation factor was also an integral membrane protein of chromoplasts. These data demonstrate that the internal membranes of chromoplasts are functional with respect to protein translocation on the thylakoid Sec and ΔpH pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isopentenyl diphosphate (IPP), which is produced from mevalonic acid or other nonmevalonic substrates, is the universal precursor of isoprenoids in nature. Despite the presence of several isoprenoid compounds in plastids, enzymes of the mevalonate pathway leading to IPP formation have never been isolated or identified to our knowledge. We now describe the characterization of two pepper (Capsicum annuum L.) cDNAs, CapTKT1 and CapTKT2, that encode transketolases having distinct and dedicated specificities. CapTKT1 is primarily involved in plastidial pentose phosphate and glycolytic cycle integration, whereas CapTKT2 initiates the synthesis of isoprenoids in plastids via the nonmevalonic acid pathway. From pyruvate and glyceraldehyde-3-phosphate, CapTKT2 catalyzes the formation of 1-deoxy-xylulose-5-phosphate, the IPP precursor. CapTKT1 is almost constitutively expressed during the chloroplast-to-chromoplast transition, whereas CapTKT2 is overexpressed during this period, probably to furnish the IPP necessary for increased carotenoid biosynthesis. Because deoxy-xylulose phosphate is shared by the plastid pathways of isoprenoid, thiamine (vitamin B1), and pyridoxine (vitamin B6) biosynthesis, our results may explain why albino phenotypes usually occur in thiamine-deficient plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.