903 resultados para Oxidative damage


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aqueous extracts of the sporophores of eight mushroom species were assessed for their ability to prevent H2O2-induced oxidative damage to cellular DNA using the single-cell gel electrophoresis (Comet) assay. The highest genoprotective effects were obtained with cold (20°C) and hot (100°C) water extracts of Agaricus bisporus and Ganoderma lucidum fruit bodies, respectively. No protective effects were observed with Mushroom Derived Preparations (MDPs) from Flammulina velutipes, Auricularia auricula, Hypsizygus marmoreus, Lentinula edodes, Pleurotus sajor-caju, and Volvariella volvacea. These findings indicate that some edible mushrooms represent a valuable source of biologically active compounds with potential for protecting cellular DNA from oxidative damage. © 2002 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO) is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP) in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA) and proline and reduced pirogalol peroxidase (PG-POD) activity, but did not affect the activity of superoxide dismutase (SOD). When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toluene is an organic solvent used in numerous processes and products, including industrial paints. Toluene neurotoxicity and reproductive toxicity are well recognized: however, its genotoxicity is still under discussion, and toluene is not classified as a carcinogenic solvent. Using the comet assay and the micronucleus test for detection of possible genotoxic effects of toluene, we monitored industrial painters from Rio Grande do Sul, Brazil. The putative involvement of oxidative stress in genetic damage and the influences of age, smoking, alcohol consumption, and exposure time were also assessed. Although all biomarkers of toluene exposure were below the biological exposure limits, painters presented significantly higher DNA damage (comet assay) than the control group; however, in the micronucleus assay, no significant difference was observed. Painters also showed alterations in hepatic enzymes and albumin levels, as well as oxidative damage, suggesting the involvement of oxidative stress. According to multiple linear regression analysis, blood toluene levels may account for the increased DNA damage in painters. In summary, this study showed that low levels of toluene exposure can cause genetic damage, and this is related to oxidative stress, age, and time of exposure. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poplar is considered a good candidate for phytoremediation, but its tolerance to heavy metals has not been fully investigated yet. In the present work, two different culture systems (in vitro and aeroponic/hydroponic) and two different stress tolerant clones of Populus alba (AL22 and Villafranca) were investigated for their total polyphenol and flavonoid content, individual phenolic compounds, polyamine, lipid peroxidation and hydrogen peroxide levels in response to Cu. In AL22 poplar plants cultured in vitro in the presence or absence of 50 μM Cu, total leaves polyphenol and flavonoid content was higher in treated samples than in controls but unaltered in the roots. Equally the same clone, grown under aeroponic conditions and hydroponically treated for 72 h with 100 μM Cu, displayed increased amount of polyphenols and flavonoids in the leaves, in particular chlorogenic acid and quercetin, and no differences in the roots. In exudates from treated roots total polyphenols and flavonoids, in particular catechin and epicatechin, were more abundant than in controls. Polyamine levels show an increase in conjugated putrescine (Put) and spermidine (Spd) was found. In the Villafranca clone, treated with 100 μM Cu for 6, 24 and 72 h, the pattern of polyphenol and flavonoid accumulation was the same as in AL22; in Cu-treated roots these compounds decreased compared with controls while they increased in root exudates. Free polyamine levels rose at 24 and 72 h while only conjugated Put increased at 24 h. Cu-treated Villafranca plants exhibited a higher malondialdehyde production than controls indicative of membrane lipid peroxidation and, therefore, oxidative stress. An in vitro experiment was carried to investigate the antioxidant effect of the polyamine spermidine (Spd). Exogenous Spd, supplied together with 100 μM Cu, reduced the accumulation of polyphenols and flavonoids, MDA and hydrogen peroxide induced by Cu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carotenoid-based sexual ornaments are hypothesized to be reliable signals of male quality, based on an allocation trade-off between the use of carotenoids as pigments and their use in antioxidant defence against reactive oxygen species. Carotenoids appear to be poor antioxidants in vivo, however, and it is not clear whether variation in ornament expression is correlated with measures of oxidative stress (OXS) under natural conditions. We used single-cell gel electrophoresis to assay oxidative damage to erythrocyte DNA in the common yellowthroat (Geothlypis trichas), a sexually dichromatic warbler in which sexual selection favours components of the males’ yellow ‘bib’. We found that the level of DNA damage sustained by males predicted their overwinter survivorship and was reflected in the quality of their plumage. Males with brighter yellow bibs showed lower levels of DNA damage, both during the year the plumage was sampled (such that yellow brightness signalled current OXS) and during the previous year (such that yellow brightness signalled past OXS). We suggest that carotenoid-based ornaments can convey information about OXS to prospective mates and that further work exploring the proximate mechanism(s) linking OXS to coloration is warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated levels of maternal androgens in avian eggs affect numerous traits, including oxidative stress. However, current studies disagree as to whether prenatal androgen exposure enhances or ameliorates oxidative stress. Here, we tested how prenatal testosterone exposure affects oxidative stress in female domestic chickens (Gallus gallus) during the known oxidative challenge of an acute stressor. Prior to incubation, eggs were either injected with an oil vehicle or 5 ng testosterone. At either 17 or 18 days post-hatch, several oxidative stress markers were assessed from blood taken before and after a 20 min acute stressor, as well as following a 25 min recovery from the stressor. We found that, regardless of yolk treatment, during both stress and recovery all individuals were in a state of oxidative stress, with elevated levels of oxidative damage markers accompanied by a reduced total antioxidant capacity. In addition, testosterone-exposed individuals exhibited poorer DNA damage repair efficiencies in comparison with control individuals. Our work suggests that while yolk androgens do not alter oxidative stress directly, they may impair mechanisms of oxidative damage repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desferrioxamine inhibits cortical necrosis in neonatal rats with experimental pneumococcal meningitis, suggesting that iron-induced oxidative damage might be responsible for neuronal damage. We therefore examined the spatial and temporal profile of changes in cortical iron and iron homeostatic proteins during pneumococcal meningitis. Infection was associated with a steady and global increase of non-haem iron in the cortex, particularly in neuronal cell bodies of layer II and V, and in capillary endothelial cells. The non-haem iron increase was associated with induction of haem oxygenase (HO)-1 in neurones, microglia and capillary endothelial cells, whereas HO-2 levels remained unchanged, suggesting that the non-haem iron increase might be the result of HO-1-mediated haem degradation. Indeed, treatment with the haem oxygenase inhibitor tin protoporphyrin (which completely blocked the accumulation of bilirubin detected in HO-1-positive cells) completely prevented the infection-associated non-haem iron increase. The same cells also displayed markedly increased ferritin staining, the increase of which occurred independently of HO activity. At the same time, no increase in DNA/RNA oxidation was observed in infected animals (as assessed by in situ detection of 8-hydroxy[deoxy]guanosine), strongly suggesting that ferritin up-regulation protected the brain from iron-induced oxidative damage. Thus, although pneumococcal meningitis leads to an increase of cortical non-haem iron, protective mechanisms up-regulated in parallel prevent iron-induced oxidative damage. Cortical damage does not appear to be a direct consequence of increased iron, therefore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidatively damaged RNA has recently gathered more attention and has been closely related to different neurodegenerative diseases. The principles of oxidative stress and its influence on nucleic acids are reported. In contrast to DNA oxidative lesions of RNA have been scarcely described in the literature so far. These known stable RNA base modifications which arise under oxidative stress are reviewed here with regard to their biophysical properties and their potential mutagenicity. Furthermore the possible mechanisms of how cells deal with oxidized RNA are discussed. Posttranscriptional RNA modifications and the oxidation of RNA as an early event in several neurodegenerative diseases are not in the scope of this review.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lindane, or γ-hexachlorocyclohexane, is a chlorinated hydrocarbon pesticide that was banned from U.S. production in 1976, but until recently continued to be imported and applied for occupational and domestic purposes. Lindane is known to cause central nervous system (CNS), immune, cardiovascular, reproductive, liver, and kidney toxicity. The mechanism for which lindane interacts with the CNS has been elucidated, and involves antagonism of the γ-aminobutyric acid/benzodiazepine (GABAA/BZD) receptor. Antagonism of this receptor results in the inhibition of Cl- channel flux, with subsequent convulsions, seizures, and paralysis. This response makes lindane a desirable defense against arthropod pests in agriculture and the home. However, formulation and application of this compound can contribute to human toxicity. In conjunction with this exposure scenario, workers may be subject to both heat and physical stress that may increase their susceptibility to pesticide toxicity by altering their cellular stress response. The kidneys are responsible for maintaining osmotic homeostasis, and are exposed to agents that undergo urinary excretion. The mechanistic action of lindane on the kidneys is not well understood. Lindane, in other organ systems, has been shown to cause cellular damage by generation of free radicals and oxidative stress. Previous research in our laboratory has shown that lindane causes apoptosis in distal tubule cells, and delays renal stress response under hypertonic stress. Characterizing the mechanism of action of lindane under conditions of physiologic stress is necessary to understand the potential hazard cyclodiene pesticides and other organochlorine compounds pose to exposed individuals under baseline conditions, as well as under conditions of physiologic stress. We demonstrated that exposure to lindane results in oxidative damage and dysregulation of glutathione response in renal distal tubule (MDCK) cells. We showed that under conditions of hypertonic stress, lindane-induced oxidative stress resulted in early onset apoptosis and corresponding down-regulated expression of the anti-apoptotic protein, Bcl-xL. Thus, the interaction of lindane with renal peripheral benzodiazepine receptors (PBR) is associated with attenuation of cellular protective proteins, making the cell more susceptible to injury or death. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms that cause aging are not well understood. The oxidative stress hypothesis proposes that the changes associated with aging are a consequence of random oxidative damage to biomolecules. We hypothesized that oxidation of specific proteins is critical in controlling the rate of the aging process. Utilizing an immunochemical probe for oxidatively modified proteins, we show that mitochondrial aconitase, an enzyme in the citric acid cycle, is a specific target during aging of the housefly. The oxidative damage detected immunochemically was paralleled by a loss of catalytic activity of aconitase, an enzyme activity that is critical in energy metabolism. Experimental manipulations which decrease aconitase activity should therefore cause a decrease in life-span. This expected decrease was observed when flies were exposed to hyperoxia, which oxidizes aconitase, and when they were given fluoroacetate, an inhibitor of aconitase. The identification of a specific target of oxidative damage during aging allows for the assessment of the physiological age of a specific individual and provides a method for the evaluation of treatments designed to affect the aging process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free transition metal ions oxidize lipids and lipoproteins in vitro; however, recent evidence suggests that free metal ion-independent mechanisms are more likely in vivo. We have shown previously that human ceruloplasmin (Cp), a serum protein containing seven Cu atoms, induces low density lipoprotein oxidation in vitro and that the activity depends on the presence of a single, chelatable Cu atom. We here use biochemical and molecular approaches to determine the site responsible for Cp prooxidant activity. Experiments with the His-specific reagent diethylpyrocarbonate (DEPC) showed that one or more His residues was specifically required. Quantitative [14C]DEPC binding studies indicated the importance of a single His residue because only one was exposed upon removal of the prooxidant Cu. Plasmin digestion of [14C]DEPC-treated Cp (and N-terminal sequence analysis of the fragments) showed that the critical His was in a 17-kDa region containing four His residues in the second major sequence homology domain of Cp. A full length human Cp cDNA was modified by site-directed mutagenesis to give His-to-Ala substitutions at each of the four positions and was transfected into COS-7 cells, and low density lipoprotein oxidation was measured. The prooxidant site was localized to a region containing His426 because CpH426A almost completely lacked prooxidant activity whereas the other mutants expressed normal activity. These observations support the hypothesis that Cu bound at specific sites on protein surfaces can cause oxidative damage to macromolecules in their environment. Cp may serve as a model protein for understanding mechanisms of oxidant damage by copper-containing (or -binding) proteins such as Cu, Zn superoxide dismutase, and amyloid precursor protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidants generated by eosinophils during chronic inflammation may lead to mutagenesis in adjacent epithelial cells. Eosinophil peroxidase, a heme enzyme released by eosinophils, generates hypobromous acid that damages tissue in inflammatory conditions. We show that human eosinophils use eosinophil peroxidase to produce 5-bromodeoxycytidine. Flow cytometric, immunohistochemical, and mass spectrometric analyses all demonstrated that 5-bromodeoxycytidine generated by eosinophil peroxidase was taken up by cultured cells and incorporated into genomic DNA as 5-bromodeoxyuridine. Although previous studies have focused on oxidation of chromosomal DNA, our observations suggest another mechanism for oxidative damage of DNA. In this scenario, peroxidase-catalyzed halogenation of nucleotide precursors yields products that subsequently can be incorporated into DNA. Because the thymine analog 5-BrUra mispairs with guanine in DNA, generation of brominated pyrimidines by eosinophils might constitute a mechanism for cytotoxicity and mutagenesis at sites of inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of a moderate water deficit (water potential of −1.3 MPa) to pea (Pisum sativum L. cv Lincoln) leaves led to a 75% inhibition of photosynthesis and to increases in zeaxanthin, malondialdehyde, oxidized proteins, and mitochondrial, cytosolic, and chloroplastic superoxide dismutase activities. Severe water deficit (−1.9 MPa) almost completely inhibited photosynthesis, decreased chlorophylls, β-carotene, neoxanthin, and lutein, and caused further conversion of violaxanthin to zeaxanthin, suggesting damage to the photosynthetic apparatus. There were consistent decreases in antioxidants and pyridine nucleotides, and accumulation of catalytic Fe, malondialdehyde, and oxidized proteins. Paraquat (PQ) treatment led to similar major decreases in photosynthesis, water content, proteins, and most antioxidants, and induced the accumulation of zeaxanthin and damaged proteins. PQ decreased markedly ascorbate, NADPH, ascorbate peroxidase, and chloroplastic Fe-superoxide dismutase activity, and caused major increases in oxidized glutathione, NAD+, NADH, and catalytic Fe. It is concluded that, in cv Lincoln, the increase in catalytic Fe and the lowering of antioxidant protection may be involved in the oxidative damage caused by severe water deficit and PQ, but not necessarily in the incipient stress induced by moderate water deficit. Results also indicate that the tolerance to water deficit in terms of oxidative damage largely depends on the legume cultivar.