964 resultados para Ordinary differential equations. Initial value problem. Existenceand uniqueness. Euler method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Presented at the Differential Equation Workshop, Center for Interdisciplinary Research (Zif), University of Bielefeld, West Germany, April 21, 1980."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"UILU-ENG 80 1701."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"COO-1469-0164."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Supported in part by contract US AEC AT(11-1)2383."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: leaf 11.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"COO-1469-0103."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we discuss the effects of white and coloured noise perturbations on the parameters of a mathematical model of bacteriophage infection introduced by Beretta and Kuang in [Math. Biosc. 149 (1998) 57]. We numerically simulate the strong solutions of the resulting systems of stochastic ordinary differential equations (SDEs), with respect to the global error, by means of numerical methods of both Euler-Taylor expansion and stochastic Runge-Kutta type. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oscillation criteria are given for the second order sublinear non-autonomous differential equation. (r(t) (x)x′(t))′ + q(t)g(x(t)) = (t). These criteria extends and improves earlier oscillation criteria of Kamenev, Kura, Philos and Wong. Oscillation criteria are also given for second order sublinear damped non-autonomous differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dichotomysimilar property for a class of homogeneous differential equations in an arbitrary Banach space is introduced. By help of them, existence of quasi bounded solutions of the appropriate nonhomogeneous equation is proved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 34A30, 34A40, 34C10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work develops a method for solving ordinary differential equations, that is, initial-value problems, with solutions approximated by using Legendre's polynomials. An iterative procedure for the adjustment of the polynomial coefficients is developed, based on the genetic algorithm. This procedure is applied to several examples providing comparisons between its results and the best polynomial fitting when numerical solutions by the traditional Runge-Kutta or Adams methods are available. The resulting algorithm provides reliable solutions even if the numerical solutions are not available, that is, when the mass matrix is singular or the equation produces unstable running processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 34A08, 34A37, 49N70