851 resultados para Optimización combinatoria
Resumo:
249 p.
Resumo:
El texto está dividido en tres capítulos. Se explicarán conceptos, teoría y modelos que intervendrán de manera directa en los capítulos posteriores. En el primer capítulo se abordarán los problemas lineales de redes. Se describe la teoría relativa a redes y con ello se desarrolla el método simplex para redes, una especialización del método simplex. Además se introducen los problemas de flujo de redes a costo mínimo. En el segundo capítulo se exponen los problemas de transporte y algún caso particular del mismo, para lo cual no será prácticamente necesario el desarrollo de nueva teoría, siendo válido todo lo expuesto en el capítulo previo. En el tercer capítulo se extiende el concepto de problemas de transporte, mediante modelos más completos que pretenden adecuarse algo más a los modelos de la vida real. A pesar de no ser problemas de transporte, están estrechamente relacionados con ellos y por lo tanto podrá ser explotada su estructura interna de problema de transporte. Por último, en los apéndices se encuentran los programas utilizados para resolver los problemas y los ejemplos del texto, se explica como resolver el problema de costo mínimo, de transporte o de transbordo computacionalmente y se realizan pruebas computacionales que demuestran la importancia de las propiedades de los problemas de redes.
Resumo:
112 hojas : ilustraciones, fotografías.
Resumo:
110 hojas.
Resumo:
El aprovechamiento de los nutrientes y el agua por el tabaco en lotes de pequeños productores de Chicoana (Salta) puede ser optimizado según lo sugieren diagnósticos preliminares. El objetivo de esta tesis fue investigar la dinámica de los nutrientes y el agua con el fin de optimizar el uso de dichos recursos. La dinámica de los nutrientes y el agua se investigó en condiciones de campo mientras que el ajuste de dichos factores para el tabaco se desarrolló en condiciones controladas. Los estudios de campo se realizaron en 13 lotes de pequeños productores los cuales fueron separados en dos grupos AP y BP (alta y baja producción). Antes y durante el cultivo se determinaron en suelo: textura, N-nitratos, N, P y K total y en planta: N, P y K absorbido y materia seca en planta entera, hoja, tallo y raíz del tabaco. En condiciones controladas se aplicó un diseño factorial (n=3) : MO inicial, fertilización según modelo zonal y nivel de riego. A cosecha, se evaluaron MS y N, P y K absorbidos. Los resultados mostraron que la MS, N, P y K absorbido en AP resultaron significativamente superiores a BP. La oferta de nutrientes fue muy superior a la demanda generándose excedentes en el balance de N. Las dosis de K y P aplicadas fueron superiores a las recomendadas aunque no se observaron excedentes en el suelo. El muy bajo nivel de P absorbido pudo deberse al escaso desarrollo radicular. El estudio de la dinámica del agua mostró que la disminución del 30 por ciento de rendimiento pudo relacionarse con el riego deficitario. El estudio en condiciones controladas demostró que los criterios utilizados (modelo generado en la zona y umbrales de humedad) permiten optimizar el uso de los nutrientes y el agua por el tabaco en lotes de pequeños productores de Chicoana.
Resumo:
p.247-252
Resumo:
p.107-113
Resumo:
Este articulo reporta el trabajo de estudiantes de noveno a undécimo grado en la solución de un problema de optimización, en donde el modelado juega un papel principal puesto que les permitió llegar a conclusiones y generalizaciones que no fueron posibles a través del lápiz y el papel. Se comentan las estrategias y procedimientos que siguieron los estudiantes y se destaca la importancia de la mediación instrumental a través de la modelación en el proceso de verificación de la solución del problema.
Resumo:
Esta propuesta es el resultado de la investigación llevada a cabo en el Núcleo de Pensamiento Aleatorio y los objetivos fueron (1) diseñar una unidad didáctica que (a) abordara la enseñanza de la combinatoria con un fuerte énfasis en la comprensión e (b) involucrara a los estudiantes en la construcción colectiva de los significados mediante el trabajo en grupos colaborativos. (2) contrastar la efectividad de la unidad didáctica en el desempeño de los estudiantes en un test de combinatoria. Para responder a estos objetivos seguimos las recomendaciones de la Teoría de situaciones didácticas de Brousseau (1997) y las recomendaciones para el análisis de datos cuantitativos (Hernández- Sampieri, Fernández-Collado, & Baptista-Lucio, 2008).
Resumo:
La experiencia que se presenta pretende valorar la intuición optimizadora en estudiantes de secundaria obligatoria. El problema que se aborda es, dado un conjunto de cantidades, elegir entre ellas las que sumen una cantidad exacta o lo más cercana a ella. El resultado de la experiencia de aula en un contexto específico ha permitido identificar la poca preparación de los estudiantes para este tipo de tarea. La principal conclusión es que los estudiantes están preparados para sumar cantidades, pero les resulta muy difícil elegir los sumandos que sumen una determinada cantidad, desconocen estrategias y son incapaces de inventar heurísticos que les lleve a conseguir el objetivo. La reflexión, consecuencia de la experiencia realizada, es que a los problemas de optimización se les dedica poca atención en la enseñanza obligatoria a pesar de ser de gran utilidad en la vida cotidiana.
Resumo:
En el marco del proyecto "Incorporación de Nuevas Tecnologías al Currículo de Matemáticas de la Educación Media de Colombia", se han suscitado una serie de actividades y situaciones problemas con el propósito de potenciar el desarrollo del pensamiento matemático de los alumnos en el nivel medio y en el universitario. En el caso del Departamento del Cesar, se han trabajado diversos problemas que conllevan al desarrollo del pensamiento variacional, sin descartar que en el proceso se utilicen los pensamientos geométrico, numérico, métrico y aleatorio.
Resumo:
Los problemas combinatorios tienen profundas implicaciones tanto en el desarrollo de algunas ramas de la Matemática como en otras disciplinas (Batanero, Godino y Navarro-Pelayo, 1994). Una mención especial merece el papel de la Combinatoria en la Probabilidad, ya que una escasa capacidad del razonamiento combinatorio reduce la aplicación del concepto de Probabilidad a casos muy sencillos o de fácil enumeración (Piaget e Inhelder, 1951). Debido a la importancia del tema, decidimos concentrarnos en su tratamiento en algunos libros de texto de Matemáticas de Educación Secundaria. Nos basamos en el desarrollo de la teoría de los significados sistémicos, desarrollada por Godino y colaboradores, para considerar el libro de texto como una institución y, en ese contexto, el problema de investigación abordado es la caracterización del significado institucional del objeto matemático “Combinatoria” en los libros de texto citados.
Resumo:
El discurso escolar del contenido de programación lineal, en los establecimientos educacionales chilenos, se ha convertido en un proceso mecánico y sin sentido para el estudiante. Para revertir esta mirada, se intenta dar respuesta a la siguiente interrogante ¿Cuáles son los significados reales que emergen y dan fuerza a la programación lineal? Se evidenciará el estudio del rol actual de la programación lineal y los procesos históricos de su surgimiento, con el fin de identificar aquellos factores que le dan fuerza a su desarrollo y construcción.
Resumo:
Cuando enseñamos a los alumnos a resolver problemas, solemos abusar de la utilización de algoritmos encaminados a encontrar la solución óptima, evitando las dificultades que puede suponer la introducción de reglas más o menos complejas en el diseño de dicho algoritmo. Pero resolver un problema es mucho más que aplicar un algoritmo de forma mecánica, supone encontrar una respuesta coherente a una serie de datos relacionados dentro de un contexto. Es por esto que presentamos esta práctica, donde la utilización de un algoritmo para resolver un problema nos lleva a encontrar soluciones que descartaremos como útiles.
Resumo:
En este trabajo se plantea la necesidad de motivar el estudio de modelos matemáticos considerando algunos casos básicos de naturaleza combinatoria de importancia en el mundo real. El estudio de los correspondientes problemas de optimización y la introducción y aplicación de métodos de resolución sencillos se toma como base para argumentar a favor de su inclusión, como alternativa válida para motivar la utilidad de las Matemáticas, en los últimos cursos de la enseñanza secundaria.