945 resultados para Opinion question answering
Resumo:
Online enquiry communities such as Question Answering (Q&A) websites allow people to seek answers to all kind of questions. With the growing popularity of such platforms, it is important for community managers to constantly monitor the performance of their communities. Although different metrics have been proposed for tracking the evolution of such communities, maturity, the process in which communities become more topic proficient over time, has been largely ignored despite its potential to help in identifying robust communities. In this paper, we interpret community maturity as the proportion of complex questions in a community at a given time. We use the Server Fault (SF) community, a Question Answering (Q&A) community of system administrators, as our case study and perform analysis on question complexity, the level of expertise required to answer a question. We show that question complexity depends on both the length of involvement and the level of contributions of the users who post questions within their community. We extract features relating to askers, answerers, questions and answers, and analyse which features are strongly correlated with question complexity. Although our findings highlight the difficulty of automatically identifying question complexity, we found that complexity is more influenced by both the topical focus and the length of community involvement of askers. Following the identification of question complexity, we define a measure of maturity and analyse the evolution of different topical communities. Our results show that different topical communities show different maturity patterns. Some communities show a high maturity at the beginning while others exhibit slow maturity rate. Copyright 2013 ACM.
Resumo:
Value of online Question Answering (QandA) communities is driven by the question-answering behaviour of its members. Finding the questions that members are willing to answer is therefore vital to the effcient operation of such communities. In this paper, we aim to identify the parameters that cor- relate with such behaviours. We train different models and construct effective predictions using various user, question and thread feature sets. We show that answering behaviour can be predicted with a high level of success.
Resumo:
Community-driven Question Answering (CQA) systems that crowdsource experiential information in the form of questions and answers and have accumulated valuable reusable knowledge. Clustering of QA datasets from CQA systems provides a means of organizing the content to ease tasks such as manual curation and tagging. In this paper, we present a clustering method that exploits the two-part question-answer structure in QA datasets to improve clustering quality. Our method, {\it MixKMeans}, composes question and answer space similarities in a way that the space on which the match is higher is allowed to dominate. This construction is motivated by our observation that semantic similarity between question-answer data (QAs) could get localized in either space. We empirically evaluate our method on a variety of real-world labeled datasets. Our results indicate that our method significantly outperforms state-of-the-art clustering methods for the task of clustering question-answer archives.
Resumo:
At NTCIR-9, we participated in the cross-lingual link discovery (Crosslink) task. In this paper we describe our approaches to discovering Chinese, Japanese, and Korean (CJK) cross-lingual links for English documents in Wikipedia. Our experimental results show that a link mining approach that mines the existing link structure for anchor probabilities and relies on the “translation” using cross-lingual document name triangulation performs very well. The evaluation shows encouraging results for our system.
Resumo:
This paper presents an overview of NTCIR-9 Cross-lingual Link Discovery (Crosslink) task. The overview includes: the motivation of cross-lingual link discovery; the Crosslink task definition; the run submission specification; the assessment and evaluation framework; the evaluation metrics; and the evaluation results of submitted runs. Cross-lingual link discovery (CLLD) is a way of automatically finding potential links between documents in different languages. The goal of this task is to create a reusable resource for evaluating automated CLLD approaches. The results of this research can be used in building and refining systems for automated link discovery. The task is focused on linking between English source documents and Chinese, Korean, and Japanese target documents.
Resumo:
INEX investigates focused retrieval from structured documents by providing large test collections of structured documents, uniform evaluation measures, and a forum for organizations to compare their results. This paper reports on the INEX 2011 evaluation campaign, which consisted of a five active tracks: Books and Social Search, Data Centric, Question Answering, Relevance Feedback, and Snippet Retrieval. INEX 2011 saw a range of new tasks and tracks, such as Social Book Search, Faceted Search, Snippet Retrieval, and Tweet Contextualization.
Resumo:
Nowadays people heavily rely on the Internet for information and knowledge. Wikipedia is an online multilingual encyclopaedia that contains a very large number of detailed articles covering most written languages. It is often considered to be a treasury of human knowledge. It includes extensive hypertext links between documents of the same language for easy navigation. However, the pages in different languages are rarely cross-linked except for direct equivalent pages on the same subject in different languages. This could pose serious difficulties to users seeking information or knowledge from different lingual sources, or where there is no equivalent page in one language or another. In this thesis, a new information retrieval task—cross-lingual link discovery (CLLD) is proposed to tackle the problem of the lack of cross-lingual anchored links in a knowledge base such as Wikipedia. In contrast to traditional information retrieval tasks, cross language link discovery algorithms actively recommend a set of meaningful anchors in a source document and establish links to documents in an alternative language. In other words, cross-lingual link discovery is a way of automatically finding hypertext links between documents in different languages, which is particularly helpful for knowledge discovery in different language domains. This study is specifically focused on Chinese / English link discovery (C/ELD). Chinese / English link discovery is a special case of cross-lingual link discovery task. It involves tasks including natural language processing (NLP), cross-lingual information retrieval (CLIR) and cross-lingual link discovery. To justify the effectiveness of CLLD, a standard evaluation framework is also proposed. The evaluation framework includes topics, document collections, a gold standard dataset, evaluation metrics, and toolkits for run pooling, link assessment and system evaluation. With the evaluation framework, performance of CLLD approaches and systems can be quantified. This thesis contributes to the research on natural language processing and cross-lingual information retrieval in CLLD: 1) a new simple, but effective Chinese segmentation method, n-gram mutual information, is presented for determining the boundaries of Chinese text; 2) a voting mechanism of name entity translation is demonstrated for achieving a high precision of English / Chinese machine translation; 3) a link mining approach that mines the existing link structure for anchor probabilities achieves encouraging results in suggesting cross-lingual Chinese / English links in Wikipedia. This approach was examined in the experiments for better, automatic generation of cross-lingual links that were carried out as part of the study. The overall major contribution of this thesis is the provision of a standard evaluation framework for cross-lingual link discovery research. It is important in CLLD evaluation to have this framework which helps in benchmarking the performance of various CLLD systems and in identifying good CLLD realisation approaches. The evaluation methods and the evaluation framework described in this thesis have been utilised to quantify the system performance in the NTCIR-9 Crosslink task which is the first information retrieval track of this kind.
Resumo:
[EN]Measuring semantic similarity and relatedness between textual items (words, sentences, paragraphs or even documents) is a very important research area in Natural Language Processing (NLP). In fact, it has many practical applications in other NLP tasks. For instance, Word Sense Disambiguation, Textual Entailment, Paraphrase detection, Machine Translation, Summarization and other related tasks such as Information Retrieval or Question Answering. In this masther thesis we study di erent approaches to compute the semantic similarity between textual items. In the framework of the european PATHS project1, we also evaluate a knowledge-base method on a dataset of cultural item descriptions. Additionaly, we describe the work carried out for the Semantic Textual Similarity (STS) shared task of SemEval-2012. This work has involved supporting the creation of datasets for similarity tasks, as well as the organization of the task itself.
Resumo:
Thomas, R., Spink, S., Durbin, J. & Urquhart, C. (2005). NHS Wales user needs study including knowledgebase tools report. Report for Informing Healthcare Strategy implementation programme. Aberystwyth: Department of Information Studies, University of Wales Aberystwyth. Sponsorship: Informing Healthcare, NHS Wales
Resumo:
Textual problem-solution repositories are available today in
various forms, most commonly as problem-solution pairs from community
question answering systems. Modern search engines that operate on
the web can suggest possible completions in real-time for users as they
type in queries. We study the problem of generating intelligent query
suggestions for users of customized search systems that enable querying
over problem-solution repositories. Due to the small scale and specialized
nature of such systems, we often do not have the luxury of depending on
query logs for finding query suggestions. We propose a retrieval model
for generating query suggestions for search on a set of problem solution
pairs. We harness the problem solution partition inherent in such
repositories to improve upon traditional query suggestion mechanisms
designed for systems that search over general textual corpora. We evaluate
our technique over real problem-solution datasets and illustrate that
our technique provides large and statistically significant