956 resultados para Operatibility of the Paterna function
Resumo:
Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms.
Resumo:
OBJECTIVES To evaluate the stabilizing function of atlanto-axial ligaments in dogs. STUDY DESIGN Cadaveric biomechanical study. ANIMALS Beagle dog cadavers (n = 10). METHODS The craniocervical region was collected from 10 Beagle cadavers, and the occipito-atlanto-axial region was prepared and freed from the surrounding muscles. Care was taken to preserve integrity of the atlantoaxial ligaments and atlantoaxial joint capsule. The atlanto-occipital joints were blocked with 2 diverging transarticular 1.8 mm positive threaded K-wires. Specimen extremities were embedded in polymethylmethacrylate (PMMA) and mounted on a simulator testing shear load at the atlantoaxial joint. Range of motion (ROM) and neutral zone (NZ) were determined with all ligaments intact, after cutting the apical ligament, both alar ligaments, the transverse ligaments and finally after cutting the dorsal atlantoaxial ligament. RESULTS ROM increased similarly and stepwise during testing. The most significant increase was observed after transection of the alar ligaments. CONCLUSION The alar ligaments seem to be the most important ligamentous structures for stabilization of the atlantoaxial joint under shear load.
Resumo:
OBJECTIVE: To compare the biomechanical properties of a ventral transarticular lag screw fixation technique, a new dorsal atlantoaxial instability (AAI) clamp, and a new ventral AAI hook plate under sagittal shear loading after transection of the ligaments of the atlantoaxial joint. STUDY DESIGN: Cadaveric biomechanical study. ANIMALS: Canine cadavers (n = 10). MATERIALS AND METHODS: The occipitoatlantoaxial region of Beagles euthanatized for reasons unrelated to the study was prepared leaving only ligamentous structures and the joint capsules between the first 2 cervical vertebrae (C1 and C2). The atlanto-occipital joints were stabilized with 2 transarticular diverging positive threaded K-wires. The occipital bone and the caudal end of C2 were embedded in polymethylmethacrylate and loaded in shear to a force of 50 Newtons. The range of motion (ROM) and neutral zone (NZ) of the atlantoaxial joint were determined after 3 loading cycles with atlantoaxial ligaments intact, after ligament transection, and after fixation with each implant. The testing order of implants was randomly assigned. The implants tested last were subjected to failure testing. RESULTS: All stabilization procedures decreased the ROM and NZ of the atlantoaxial joint compared to transected ligament specimens. Only stabilization with transarticular lag screws and ventral plates produced a significant reduction of ROM compare to intact specimens. CONCLUSION: Fixation with transarticular lag screws and a ventral hook plate was biomechanically similar and provided more rigidity compared to dorsal clamp fixation. Further load cycling to failure tests and clinical studies are required before making clinical recommendations.
Resumo:
Many small bacterial, archaebacterial, and eukaryotic genomes have been sequenced, and the larger eukaryotic genomes are predicted to be completely sequenced within the next decade. In all genomes sequenced to date, a large portion of these organisms’ predicted protein coding regions encode polypeptides of unknown biochemical, biophysical, and/or cellular functions. Three-dimensional structures of these proteins may suggest biochemical or biophysical functions. Here we report the crystal structure of one such protein, MJ0577, from a hyperthermophile, Methanococcus jannaschii, at 1.7-Å resolution. The structure contains a bound ATP, suggesting MJ0577 is an ATPase or an ATP-mediated molecular switch, which we confirm by biochemical experiments. Furthermore, the structure reveals different ATP binding motifs that are shared among many homologous hypothetical proteins in this family. This result indicates that structure-based assignment of molecular function is a viable approach for the large-scale biochemical assignment of proteins and for discovering new motifs, a basic premise of structural genomics.
Resumo:
Mode of access: Internet.
Resumo:
At head of title: BNL 702 (T-243). (Mathematics--TID 4500, 16th ed.)
Resumo:
Includes bibliography.
Resumo:
Mode of access: Internet.
Using patients' and rheumatologists' opinions to specify a short form of the WOMAC function subscale
Resumo:
Background: The WOMAC ( Western Ontario and McMaster Universities) function subscale is widely used in clinical trials of hip and knee osteoarthritis. Reducing the number of items of the subscale would enhance efficiency and compliance, particularly for use in clinical practice applications. Objective: To develop a short form of the WOMAC function subscale based on patients' and experts' opinions ( WOMAC function short form). Methods: WOMAC function subscale data ( Likert version) were obtained from 1218 outpatients with painful hip or knee osteoarthritis. These patients and their rheumatologists selected the five items that they considered most in need of improvement. The rheumatologists were asked to select the five items for which patients in general are the most impaired. Items that were least important to patients and experts, those with a high proportion of missing data, and those with a response distribution showing a floor or ceiling response were excluded, along with one of a pair of items with a correlation coefficient >0.75. Results: The WOMAC function short form included items 1, 2, 3, 6, 7, 8, 9, and 15 of the long form. The short form did not differ substantially from the long form in responsiveness ( standardised response mean of 0.84 v 0.80). Conclusions: A short form of the WOMAC function subscale was developed according to the views of patients and rheumatologists, based on the responses of 1218 patients and 399 rheumatologists. The clinical relevance and applicability of this WOMAC function subscale short form require further evaluation.
Resumo:
Wigner functions play a central role in the phase space formulation of quantum mechanics. Although closely related to classical Liouville densities, Wigner functions are not positive definite and may take negative values on subregions of phase space. We investigate the accumulation of these negative values by studying bounds on the integral of an arbitrary Wigner function over noncompact subregions of the phase plane with hyperbolic boundaries. We show using symmetry techniques that this problem reduces to computing the bounds on the spectrum associated with an exactly solvable eigenvalue problem and that the bounds differ from those on classical Liouville distributions. In particular, we show that the total "quasiprobability" on such a region can be greater than 1 or less than zero. (C) 2005 American Institute of Physics.
Resumo:
We present new measurements of the luminosity function (LF) of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) and the 2dF SDSS LRG and Quasar (2SLAQ) survey. We have carefully quantified, and corrected for, uncertainties in the K and evolutionary corrections, differences in the colour selection methods, and the effects of photometric errors, thus ensuring we are studying the same galaxy population in both surveys. Using a limited subset of 6326 SDSS LRGs (with 0.17 < z < 0.24) and 1725 2SLAQ LRGs (with 0.5 < z < 0.6), for which the matching colour selection is most reliable, we find no evidence for any additional evolution in the LRG LF, over this redshift range, beyond that expected from a simple passive evolution model. This lack of additional evolution is quantified using the comoving luminosity density of SDSS and 2SLAQ LRGs, brighter than M-0.2r - 5 log h(0.7) = - 22.5, which are 2.51 +/- 0.03 x 10(-7) L circle dot Mpc(-3) and 2.44 +/- 0.15 x 10(-7) L circle dot Mpc(-3), respectively (< 10 per cent uncertainty). We compare our LFs to the COMBO-17 data and find excellent agreement over the same redshift range. Together, these surveys show no evidence for additional evolution (beyond passive) in the LF of LRGs brighter than M-0.2r - 5 log h(0.7) = - 21 ( or brighter than similar to L-*).. We test our SDSS and 2SLAQ LFs against a simple 'dry merger' model for the evolution of massive red galaxies and find that at least half of the LRGs at z similar or equal to 0.2 must already have been well assembled (with more than half their stellar mass) by z similar or equal to 0.6. This limit is barely consistent with recent results from semi-analytical models of galaxy evolution.