828 resultados para ORIENTED AGGREGATION
Resumo:
Precise, up-to-date and increasingly detailed road maps are crucial for various advanced road applications, such as lane-level vehicle navigation, and advanced driver assistant systems. With the very high resolution (VHR) imagery from digital airborne sources, it will greatly facilitate the data acquisition, data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lane information from aerial images with employment of the object-oriented image analysis method. Our proposed algorithm starts with constructing the DSM and true orthophotos from the stereo images. The road lane details are detected using an object-oriented rule based image classification approach. Due to the affection of other objects with similar spectral and geometrical attributes, the extracted road lanes are filtered with the road surface obtained by a progressive two-class decision classifier. The generated road network is evaluated using the datasets provided by Queensland department of Main Roads. The evaluation shows completeness values that range between 76% and 98% and correctness values that range between 82% and 97%.
Resumo:
With the emergence of multi-cores into the mainstream, there is a growing need for systems to allow programmers and automated systems to reason about data dependencies and inherent parallelismin imperative object-oriented languages. In this paper we exploit the structure of object-oriented programs to abstract computational side-effects. We capture and validate these effects using a static type system. We use these as the basis of sufficient conditions for several different data and task parallelism patterns. We compliment our static type system with a lightweight runtime system to allow for parallelization in the presence of complex data flows. We have a functioning compiler and worked examples to demonstrate the practicality of our solution.
Resumo:
Frontline employee behaviours are recognised as vital for achieving a competitive advantage for service organisations. The services marketing literature has comprehensively examined ways to improve frontline employee behaviours in service delivery and recovery. However, limited attention has been paid to frontline employee behaviours that favour customers in ways that go against organisational norms or rules. This study examines these behaviours by introducing a behavioural concept of Customer-Oriented Deviance (COD). COD is defined as, “frontline employees exhibiting extra-role behaviours that they perceive to defy existing expectations or prescribed rules of higher authority through service adaptation, communication and use of resources to benefit customers during interpersonal service encounters.” This thesis develops a COD measure and examines the key determinants of these behaviours from a frontline employee perspective. Existing research on similar behaviours that has originated in the positive deviance and pro-social behaviour domains has limitations and is considered inadequate to examine COD in the services context. The absence of a well-developed body of knowledge on non-conforming service behaviours has implications for both theory and practice. The provision of ‘special favours’ increases customer satisfaction but the over-servicing of customers is also counterproductive for the service delivery and costly for the organisation. Despite these implications of non-conforming service behaviours, there is little understanding about the nature of these behaviours and its key drivers. This research builds on inadequacies in prior research on positive deviance, pro-social and pro-customer literature to develop the theoretical foundation of COD. The concept of positive deviance which has predominantly been used to study organisational behaviours is applied within a services marketing setting. Further, it addresses previous limitations in pro-social and pro-customer behavioural literature that has examined limited forms of behaviours with no clear understanding on the nature of these behaviours. Building upon these literature streams, this research adopts a holistic approach towards the conceptualisation of COD. It addresses previous shortcomings in the literature by providing a well bounded definition, developing a psychometrically sound measure of COD and a conceptually well-founded model of COD. The concept of COD was examined across three separate studies and based on the theoretical foundations of role theory and social identity theory. Study 1 was exploratory and based on in-depth interviews using the Critical Incident Technique (CIT). The aim of Study 1 was to understand the nature of COD and qualitatively identify its key drivers. Thematic analysis was conducted to analyse the data and the two potential dimensions of COD behaviours of Deviant Service Adaptation (DSA) and Deviant Service Communication (DSC) were revealed in the analysis. In addition, themes representing the potential influences of COD were broadly classified as individual factors, situational factors, and organisational factors. Study 2 was a scale development procedure that involved the generation and purification of items for the measure based on two student samples working in customer service roles (Pilot sample, N=278; Initial validation sample, N=231). The results for the reliability and Exploratory Factor Analyses (EFA) on the pilot sample suggested the scale had poor psychometric properties. As a result, major revisions were made in terms of item wordings and new items were developed based on the literature to reflect a new dimension, Deviant Use of Resources (DUR). The revised items were tested on the initial validation sample with the EFA analysis suggesting a four-factor structure of COD. The aim of Study 3 was to further purify the COD measure and test for nomological validity based on its theoretical relationships with key antecedents and similar constructs (key correlates). The theoretical model of COD consisting of nine hypotheses was tested on a retail and hospitality sample of frontline employees (Retail N=311; Hospitality N=305) of a market research panel using an online survey. The data was analysed using Structural Equation Modelling (SEM). The results provided support for a re-specified second-order three-factor model of COD which consists of 11 items. Overall, the COD measure was found to be reliable and valid, demonstrating convergent validity, discriminant validity and marginal partial invariance for the factor loadings. The results showed support for nomological validity, although the antecedents had differing impact on COD across samples. Specifically, empathy and perspective-taking, role conflict, and job autonomy significantly influenced COD in the retail sample, whereas empathy and perspective-taking, risk-taking propensity and role conflict were significant predictors in the hospitality sample. In addition, customer orientation-selling orientation, the altruistic dimension of organisational citizenship behaviours, workplace deviance, and social desirability responding were found to correlate with COD. This research makes several contributions to theory. First, the findings of this thesis extend the literature on positive deviance, pro-social and pro-customer behaviours. Second, the research provides an empirically tested model which describes the antecedents of COD. Third, this research contributes by providing a reliable and valid measure of COD. Finally, the research investigates the differential effects of the key antecedents in different service sectors on COD. The research findings also contribute to services marketing practice. Based on the research findings, service practitioners can better understand the phenomenon of COD and utilise the measurement tool to calibrate COD levels within their organisations. Knowledge on the key determinants of COD will help improve recruitment and training programs and drive internal initiatives within the firm.
Resumo:
A persistent question in the development of models for macroeconomic policy analysis has been the relative role of economic theory and evidence in their construction. This paper looks at some popular strategies that involve setting up a theoretical or conceptual model (CM) which is transformed to match the data and then made operational for policy analysis. A dynamic general equilibrium model is constructed that is similar to standard CMs. After calibration to UK data it is used to examine the utility of formal econometric methods in assessing the match of the CM to the data and also to evaluate some standard model-building strategies. Keywords: Policy oriented economic modeling; Model evaluation; VAR models
Resumo:
The development of research data management infrastructure and services and making research data more discoverable and accessible to the research community is a key priority at the national, state and individual university level. This paper will discuss and reflect upon a collaborative project between Griffith University and the Queensland University of Technology to commission a Metadata Hub or Metadata Aggregation service based upon open source software components. It will describe the role that metadata aggregation services play in modern research infrastructure and argue that this role is a critical one.
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.