917 resultados para Notch Pathway


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Notch proteins function as receptors for membrane-bound ligands (Jagged and Delta-like) to regulate cell-fate determination. We have investigated the role of Notch signaling in embryonic endothelium of the mouse by expressing an activated form of the Notch4 protein in vasculature under the regulation of the Flk1 (VEGFR) locus. Expression of activated Notch4 results in a growth and developmental delay and embryonic lethality at about 10 days postcoitum. The extent of the developing vasculature in mutant embryos was restricted, fewer small vessels were seen, and vascular networks were disorganized. The brain periphery of mutant embryos contained large dilated vessels with evidence of compromised vessel-wall integrity and large areas of necrosis; yolk-sac vasculature was abnormal. Expression of an activated form of Notch4 in embryonic vasculature leads to abnormal vessel structure and patterning, implicating the Notch pathway in phases of vascular development associated with vessel patterning and remodeling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutations in the Hedgehog receptor, Patched 1 (Ptch1), have been linked to both familial and sporadic forms of basal cell carcinoma (BCC), leading to the hypothesis that loss of Ptch1 function is sufficient for tumor progression. By combining conditional knockout technology with the inducible activity of the Keratin6 promoter, we provide in vivo evidence that loss of Ptch1 function from the basal cell population of mouse skin is sufficient to induce rapid skin tumor formation, reminiscent of human BCC. Elimination of Ptch1 does not promote the nuclear translocation of beta-catenin and does not induce ectopic activation or expression of Notch pathway constituents. In the absence of Ptch1, however, a large proportion of basal cells exhibit nuclear accumulation of the cell cycle regulators cyclin D1 and B1. Collectively, our data suggest that Ptch1 likely functions as a tumor suppressor by inhibiting G(1)-S phase and G(2)-M phase cell cycle progression, and the rapid onset of tumor progression clearly indicates Ptch1 functions as a gatekeeper. In addition, we note the high frequency and rapid onset of tumors in this mouse model makes it an ideal system for testing therapeutic strategies, such as Patched pathway inhibitors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Maternal high-fat diet (HFD) impairs hippocampal development of offspring promoting decreased proliferation of neural progenitors, in neuronal differentiation, in dendritic spine density and synaptic plasticity reducing neurogenic capacity. Notch signaling pathway participates in molecular mechanisms of the neurogenesis. The activation of Notch signaling leads to the upregulation of Hes5, which inhibits the proliferation and differentiation of neural progenitors. This study aimed to investigate the Notch/Hes pathway activation in the hippocampus of the offspring of dams fed an HFD. Female Swiss mice were fed a control diet (CD) and an HFD from pre-mating until suckling. The bodyweight and mass of adipose tissue in the mothers and pups were also measured. The mRNA and protein expression of Notch1, Hes5, Mash1, and Delta1 in the hippocampus was assessed by RT-PCR and western blotting, respectively. Dams fed the HFD and their pups had an increased bodyweight and amount of adipose tissue. Furthermore, the offspring of mothers fed the HFD exhibited an increased Hes5 expression in the hippocampus compared with CD offspring. In addition, HFD offspring also expressed increased amounts of Notch1 and Hes5 mRNA, whereas Mash1 expression was decreased. However, the expression of Delta1 did not change significantly. We propose that the overexpression of Hes5, a Notch effector, downregulates the expression of the proneural gene Mash1 in the offspring of obese mothers, delaying cellular differentiation. These results provide further evidence that an offspring's hippocampus is molecularly susceptible to maternal HFD and suggest that Notch1 signaling in this brain region is important for neuronal differentiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present survey, we identified most of the genes involved in the receptor tyrosine kinase (RTK), mitogen activated protein kinase (MAPK) and Notch signaling pathways in the draft genome sequence of Ciona intestinalis, a basal chordate. Compared to vertebrates, most of the genes found in the Ciona genome had fewer paralogues, although several genes including ephrin, Eph and fringe appeared to have multiplied or duplicated independently in the ascidian genome. In contrast, some genes including kit/flt, PDGF and Trk receptor tyrosine kinases were not found in the present survey, suggesting that these genes are innovations in the vertebrate lineage or lost in the ascidian lineage. The gene set identified in the present analysis provides an insight into genes for the RTK, MAPK and Notch signaling pathways in the ancient chordate genome and thereby how chordates evolved these signaling pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de Mestre em Genética Molecular e Biomedicina

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolutionarily conserved Notch signaling pathway regulates a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal life. It is involved in embryonic organogenesis as well as in the maintenance of homeostasis of self-renewing systems. In this article, we review the role of Notch signaling in the hematopoietic system with particular emphasis on lymphocyte development and highlight the similarities in Notch function between Drosophila and mammalian differentiation processes. Recent studies indicating that aberrant NOTCH signaling is frequently linked to the induction of T leukemia in humans will also be discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thymus regression upon stressing stimuli, such as infectious diseases, is followed by organ reconstitution, paralleling its development in ontogeny. A narrow window of thymus development was here studied, encompassing the pro-T lymphoid precursor expansion during specification stages, by the use of epidermal growth factor plus insulin (INS) in murine fetal thymus organ cultures. Aiming to disclose signaling pathways related to these stages, cultured thymus lobes had their RNA extracted, for the search of transcripts differentially expressed using RNAse protection assays and reverse transcriptase-polymerase chain reactions. We found no difference that could explain INS-driven thymocyte growth, in the pattern of transcripts for death/proliferation mediators, or for a series of growth factor receptors and transcriptional regulators known as essential for thymus development. Thymocyte suspensions from cultured lobes, stained for phenotype analysis by fluorescence activated cell sorting, showed a decreased staining for Notch1 protein at cell surfaces upon INS addition. We analyzed the expression of Notch-related elements, and observed the recruitment of a specific set of transcripts simultaneous and compatible with INS-driven thymocyte growth, namely, transcripts for Notch3, for its ligand Jagged2, and for Deltex1, a mediator of a poorly characterized alternative pathway downstream of the Notch receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer development results from deregulated control of stem cell populations and alterations in their surrounding environment. Notch signaling is an important form of direct cell-cell communication involved in cell fate determination, stem cell potential and lineage commitment. The biological function of this pathway is critically context dependent. Here we review the pro-differentiation role and tumor suppressing function of this pathway, as revealed by loss-of-function in keratinocytes and skin, downstream of p53 and in cross-connection with other determinants of stem cell potential and/or tumor formation, such as p63 and Rho/CDC42 effectors. The possibility that Notch signaling elicits a duality of signals, involved in growth/differentiation control and cell survival will be discussed, in the context of novel approaches for cancer therapy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oncogenesis is closely linked to abnormalities in cell differentiation. Notch signaling provides an important form of intercellular communication involved in cell fate determination, stem cell potential and differentiation. Here we review the role of this pathway in the integrated growth/differentiation control of the keratinocyte cell type, and the maintenance of normal skin homeostasis. In parallel with the pro-differentiation function of Notch1 in keratinocytes, we discuss recent evidence pointing to a tumor suppressor function of this gene in both mouse skin and human cervical carcinogenesis. The possibility that Notch signaling elicits signals with a duality of growth positive and negative function will be discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the pro-differentiation and tumour suppressive functions of Notch signalling in keratinocytes are well established, the underlying mechanisms remain poorly understood. We report here that interferon regulatory factor 6 (IRF6), an IRF family member with an essential role in epidermal development, is induced in differentiation through a Notch-dependent mechanism and is a primary Notch target in keratinocytes and keratinocyte-derived SCC cells. Increased IRF6 expression contributes to the impact of Notch activation on growth/differentiation-related genes, while it is not required for induction of 'canonical' Notch targets like p21(WAF1/Cip1), Hes1 and Hey1. Down-modulation of IRF6 counteracts differentiation of primary human keratinocytes in vitro and in vivo, promoting ras-induced tumour formation. The clinical relevance of these findings is illustrated by the strikingly opposite pattern of expression of Notch1 and IRF6 versus epidermal growth factor receptor in a cohort of clinical SCCs, as a function of their grade of differentiation. Thus, IRF6 is a primary Notch target in keratinocytes, which contributes to the role of this pathway in differentiation and tumour suppression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the pro-differentiation and tumour suppressive functions of Notch signalling in keratinocytes are well established, the underlying mechanisms remain poorly understood. We report here that interferon regulatory factor 6 (IRF6), an IRF family member with an essential role in epidermal development, is induced in differentiation through a Notch-dependent mechanism and is a primary Notch target in keratinocytes and keratinocyte-derived SCC cells. Increased IRF6 expression contributes to the impact of Notch activation on growth/differentiation-related genes, while it is not required for induction of 'canonical' Notch targets like p21(WAF1/Cip1), Hes1 and Hey1. Down-modulation of IRF6 counteracts differentiation of primary human keratinocytes in vitro and in vivo, promoting ras-induced tumour formation. The clinical relevance of these findings is illustrated by the strikingly opposite pattern of expression of Notch1 and IRF6 versus epidermal growth factor receptor in a cohort of clinical SCCs, as a function of their grade of differentiation. Thus, IRF6 is a primary Notch target in keratinocytes, which contributes to the role of this pathway in differentiation and tumour suppression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordinated function of the innate and adaptive arms of the immune system in vertebrates is essential to promote protective immunity and to avoid immunopathology. The Notch signalling pathway, which was originally identified as a pleiotropic mediator of cell fate in invertebrates, has recently emerged as an important regulator of immune cell development and function. Notch was initially shown to be a key determinant of cell-lineage commitment in developing lymphocytes, but it is now known to control the homeostasis of several innate cell populations. Moreover, the roles of Notch in adaptive immunity have expanded to include the regulation of T cell differentiation and function. The aim of this Review is to summarize the current status of immune regulation by Notch. A better understanding of Notch function in both innate and adaptive immunity will hopefully provide multiple avenues for therapeutic intervention in disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Dans la peau, il a été montré que Notch1 induit l'arrêt de la prolifération et la différentiation des keratinocytes. L'inactivation de Notch1 cause une hyperplasie de l'épiderme et la formation de carcinomes basaux cellulaires. Notre groupe a principalement identifié deux voies de signalisations, la voie Shh et la voie Wnt, qui sont dérégulées en conséquence de l'inactivation de Notch1 dans la peau. Nous avons démontré l'habilité de Notch1 à réprimer la voie Wnt induite par ß-catenin dans les keratinocytes primaires ainsi que dans d'autres types de cellules épithéliales humaines. De plus, nous avons pu déterminer que Notch1 régule cette voie, probablement en favorisant la phosphorylation de ß-catenin par le complexe axin/APC/GSK-3ß. La protéine faisant partie de la voie Wnt, ou la protéine affectant la voie Wnt, qui est régulée par Notch1 est sujette à de plus amples investigations. Un autre but de cette étude a été l'identification de potentiels gènes cibles de Notch1 autres que ceux faisant partie des voies de signalisation Shh et Wnt précédemment évoquées. Ce projet fut abordé par l'analyse de puces à ADN (ISREC et Affymetrix) qui ont été utilisées pour des expériences de gain et de perte de fonction de Notch1 dans des keratinocytes prúmaires. En plus de l'hyperplasie épidermale, les souris Notch1 déficiente ont une perte importante de poils. Nous avons montré que Notch1 est nécessaire pour le développement et l'homéostasie des follicules pileux. En effet, l'inactivation du gène Notch1 mediée par l'activation des kératines 5 ou 14 dans l'épiderme, cause des défauts du cycle ainsi que de la structure des poils. De plus, d'autres appendices de la peau, comme les glandes sudoripares et de Meibomius, ont une structure anormale et sont non fonctionnelles dans les souris Notch1 déficiente. Finalement, nous avons observé que la déficience de Notch1 dans l'épithélium cornéen mène à la formation d'une plaque épidermale opaque sur la cornée. Basé sur l'hypothèse que le défaut des glandes de Meibomius des souris Notch1 déficientes cause des lésions de la surface oculaire, nous avons montré que Notch1 est essentiel pour la cicatrisation de la cornée. Lorsque Notch1 est absent, les cellules souches de l'épithélium cornéen ne sont plus capables de se différentier en cellules cornéennes, mais réparent la blessure en se différentiant en épiderme. Ce résultat indique que Notch1 est essentiel pour la différentiation de cellules souches de la cornée qui sont spécifiquement impliquées dans la réparation de la cornée. De plus, nous avons montré que l'expression de CRBP1 dans l'épithélium cornéen est diminuée en l'absence de Notch1, ceci étant possiblement à l'origine de la formation de la plaque épidermale. Abstract: In the skin, Notch1 has been shown to trigger cell growth arrest and differentiation of keratinocytes. Notch1 inactivation results in epidermal hyperplasia and subsequent formation of basal cell carcinoma-like (BCC-like) tumors. So far our group has identified two main pathways, the Shh and the Wnt pathway, that are deregulated as a consequence of Notch1 inactivation in the skin. We showed the ability of Notch1 to represses ß-catenin-mediated Wnt signaling in primary keratinocytes as well as in other types of human epithelial cells. In addition we were able to determine that Notch1 regulates this pathway possibly by enhancing ß-catenin phosphorylation by the axin/APC/GSK-3ß complex. The exact target protein of the Wnt pathway or target protein that affects the Wnt pathway, and that is regulated by Notch1, is subject of current investigation. Another aim of this study was the identification of possible Notch1 target genes in addition to those of the Shh and Wnt signaling pathways. This was addressed by gene chip analysis using ISREC as well as Affymetrix microarrays for gain and loss of function of Notch1 in mouse primary keratinocytes. In addition to epidermal hyperplasia, Notch1 deficient mice show an important hair loss. We showed that Notch1 is required for postnatal development and homeostasis of hair follicles. Indeed, keratin5 or keratinl4-driven Cre recombinase-mediated inactivation of the Notch1 gene in the epidermis causes perturbations of the hair cycle and structural defects of the hair follicle. Moreover, other skin appendages, like the sweat and Meibomian glands show abnormal morphology and are not functional in the Notch 1 deficient mice. Finally, we observed that Notch1 deficiency in the corneal epithelium leads to the formation of an epidermal corneal plaque. Based on the hypothesis that the Meiboinian gland defect in the Notch1 deficient mice results in lesions of the eye surface, we showed that Notch1 is essential for wound-healing of the cornea. In absence of Notch1 the stem cells of the corneal epithelium are no longer able to differentiate in the corneal fate but instead repair the wound by differentiating into skin-like epidermis. This result indicated that Notch1 is essential for the differentiation of corneal stem cells specifically implicated in corneal wound-healing. Moreover, we showed that CRBP1 expression in the corneal epithelium was lost in the absence of Notch1, possibly being at the origin of plaque formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wnt and Notch signaling have long been established as strongly oncogenic in the mouse mammary gland. Aberrant expression of several Wnts and other components of this pathway in human breast carcinomas has been reported, but evidence for a causative role in the human disease has been missing. Here we report that increased Wnt signaling, as achieved by ectopic expression of Wnt-1, triggers the DNA damage response (DDR) and an ensuing cascade of events resulting in tumorigenic conversion of primary human mammary epithelial cells. Wnt-1-transformed cells have high telomerase activity and compromised p53 and Rb function, grow as spheres in suspension, and in mice form tumors that closely resemble medullary carcinomas of the breast. Notch signaling is up-regulated through a mechanism involving increased expression of the Notch ligands Dll1, Dll3, and Dll4 and is required for expression of the tumorigenic phenotype. Increased Notch signaling in primary human mammary epithelial cells is sufficient to reproduce some aspects of Wnt-induced transformation. The relevance of these findings for human breast cancer is supported by the fact that expression of Wnt-1 and Wnt-4 and of established Wnt target genes, such as Axin-2 and Lef-1, as well as the Notch ligands, such as Dll3 and Dll4, is up-regulated in human breast carcinomas.