997 resultados para Nonextensive statistical mechanics
Resumo:
Sparse code division multiple access (CDMA), a variation on the standard CDMA method in which the spreading (signature) matrix contains only a relatively small number of nonzero elements, is presented and analysed using methods of statistical physics. The analysis provides results on the performance of maximum likelihood decoding for sparse spreading codes in the large system limit. We present results for both cases of regular and irregular spreading matrices for the binary additive white Gaussian noise channel (BIAWGN) with a comparison to the canonical (dense) random spreading code. © 2007 IOP Publishing Ltd.
Resumo:
This thesis presents an analysis of the stability of complex distribution networks. We present a stability analysis against cascading failures. We propose a spin [binary] model, based on concepts of statistical mechanics. We test macroscopic properties of distribution networks with respect to various topological structures and distributions of microparameters. The equilibrium properties of the systems are obtained in a statistical mechanics framework by application of the replica method. We demonstrate the validity of our approach by comparing it with Monte Carlo simulations. We analyse the network properties in terms of phase diagrams and found both qualitative and quantitative dependence of the network properties on the network structure and macroparameters. The structure of the phase diagrams points at the existence of phase transition and the presence of stable and metastable states in the system. We also present an analysis of robustness against overloading in the distribution networks. We propose a model that describes a distribution process in a network. The model incorporates the currents between any connected hubs in the network, local constraints in the form of Kirchoff's law and a global optimizational criterion. The flow of currents in the system is driven by the consumption. We study two principal types of model: infinite and finite link capacity. The key properties are the distributions of currents in the system. We again use a statistical mechanics framework to describe the currents in the system in terms of macroscopic parameters. In order to obtain observable properties we apply the replica method. We are able to assess the criticality of the level of demand with respect to the available resources and the architecture of the network. Furthermore, the parts of the system, where critical currents may emerge, can be identified. This, in turn, provides us with the characteristic description of the spread of the overloading in the systems.
Resumo:
Code division multiple access (CDMA) in which the spreading code assignment to users contains a random element has recently become a cornerstone of CDMA research. The random element in the construction is particularly attractive as it provides robustness and flexibility in utilizing multiaccess channels, whilst not making significant sacrifices in terms of transmission power. Random codes are generated from some ensemble; here we consider the possibility of combining two standard paradigms, sparsely and densely spread codes, in a single composite code ensemble. The composite code analysis includes a replica symmetric calculation of performance in the large system limit, and investigation of finite systems through a composite belief propagation algorithm. A variety of codes are examined with a focus on the high multi-access interference regime. We demonstrate scenarios both in the large size limit and for finite systems in which the composite code has typical performance exceeding those of sparse and dense codes at equivalent signal to noise ratio.
Resumo:
MSC 2010: 15A15, 15A52, 33C60, 33E12, 44A20, 62E15 Dedicated to Professor R. Gorenflo on the occasion of his 80th birthday
Resumo:
Many practical routing algorithms are heuristic, adhoc and centralized, rendering generic and optimal path configurations difficult to obtain. Here we study a scenario whereby selected nodes in a given network communicate with fixed routers and employ statistical physics methods to obtain optimal routing solutions subject to a generic cost. A distributive message-passing algorithm capable of optimizing the path configuration in real instances is devised, based on the analytical derivation, and is greatly simplified by expanding the cost function around the optimized flow. Good algorithmic convergence is observed in most of the parameter regimes. By applying the algorithm, we study and compare the pros and cons of balanced traffic configurations to that of consolidated traffic, which provides important implications to practical communication and transportation networks. Interesting macroscopic phenomena are observed from the optimized states as an interplay between the communication density and the cost functions used. © 2013 IEEE.
Resumo:
The physics of self-organization and complexity is manifested on a variety of biological scales, from large ecosystems to the molecular level. Protein molecules exhibit characteristics of complex systems in terms of their structure, dynamics, and function. Proteins have the extraordinary ability to fold to a specific functional three-dimensional shape, starting from a random coil, in a biologically relevant time. How they accomplish this is one of the secrets of life. In this work, theoretical research into understanding this remarkable behavior is discussed. Thermodynamic and statistical mechanical tools are used in order to investigate the protein folding dynamics and stability. Theoretical analyses of the results from computer simulation of the dynamics of a four-helix bundle show that the excluded volume entropic effects are very important in protein dynamics and crucial for protein stability. The dramatic effects of changing the size of sidechains imply that a strategic placement of amino acid residues with a particular size may be an important consideration in protein engineering. Another investigation deals with modeling protein structural transitions as a phase transition. Using finite size scaling theory, the nature of unfolding transition of a four-helix bundle protein was investigated and critical exponents for the transition were calculated for various hydrophobic strengths in the core. It is found that the order of the transition changes from first to higher order as the strength of the hydrophobic interaction in the core region is significantly increased. Finally, a detailed kinetic and thermodynamic analysis was carried out in a model two-helix bundle. The connection between the structural free-energy landscape and folding kinetics was quantified. I show how simple protein engineering, by changing the hydropathy of a small number of amino acids, can enhance protein folding by significantly changing the free energy landscape so that kinetic traps are removed. The results have general applicability in protein engineering as well as understanding the underlying physical mechanisms of protein folding. ^
Resumo:
The main purpose of this thesis is to go beyond two usual assumptions that accompany theoretical analysis in spin-glasses and inference: the i.i.d. (independently and identically distributed) hypothesis on the noise elements and the finite rank regime. The first one appears since the early birth of spin-glasses. The second one instead concerns the inference viewpoint. Disordered systems and Bayesian inference have a well-established relation, evidenced by their continuous cross-fertilization. The thesis makes use of techniques coming both from the rigorous mathematical machinery of spin-glasses, such as the interpolation scheme, and from Statistical Physics, such as the replica method. The first chapter contains an introduction to the Sherrington-Kirkpatrick and spiked Wigner models. The first is a mean field spin-glass where the couplings are i.i.d. Gaussian random variables. The second instead amounts to establish the information theoretical limits in the reconstruction of a fixed low rank matrix, the “spike”, blurred by additive Gaussian noise. In chapters 2 and 3 the i.i.d. hypothesis on the noise is broken by assuming a noise with inhomogeneous variance profile. In spin-glasses this leads to multi-species models. The inferential counterpart is called spatial coupling. All the previous models are usually studied in the Bayes-optimal setting, where everything is known about the generating process of the data. In chapter 4 instead we study the spiked Wigner model where the prior on the signal to reconstruct is ignored. In chapter 5 we analyze the statistical limits of a spiked Wigner model where the noise is no longer Gaussian, but drawn from a random matrix ensemble, which makes its elements dependent. The thesis ends with chapter 6, where the challenging problem of high-rank probabilistic matrix factorization is tackled. Here we introduce a new procedure called "decimation" and we show that it is theoretically to perform matrix factorization through it.
Resumo:
Systems whose spectra are fractals or multifractals have received a lot of attention in recent years. The complete understanding of the behavior of many physical properties of these systems is still far from being complete because of the complexity of such systems. Thus, new applications and new methods of study of their spectra have been proposed and consequently a light has been thrown on their properties, enabling a better understanding of these systems. We present in this work initially the basic and necessary theoretical framework regarding the calculation of energy spectrum of elementary excitations in some systems, especially in quasiperiodic ones. Later we show, by using the Schr¨odinger equation in tight-binding approximation, the results for the specific heat of electrons within the statistical mechanics of Boltzmann-Gibbs for one-dimensional quasiperiodic systems, growth by following the Fibonacci and Double Period rules. Structures of this type have already been exploited enough, however the use of non-extensive statistical mechanics proposed by Constantino Tsallis is well suited to systems that have a fractal profile, and therefore our main objective was to apply it to the calculation of thermodynamical quantities, by extending a little more the understanding of the properties of these systems. Accordingly, we calculate, analytical and numerically, the generalized specific heat of electrons in one-dimensional quasiperiodic systems (quasicrystals) generated by the Fibonacci and Double Period sequences. The electronic spectra were obtained by solving the Schr¨odinger equation in the tight-binding approach. Numerical results are presented for the two types of systems with different values of the parameter of nonextensivity q
Resumo:
Within the Tsallis thermodynamics framework, and using scaling properties of the entropy, we derive a generalization of the Gibbs-Duhem equation. The analysis suggests a transformation of variables that allows standard thermodynamics to be recovered. Moreover, we also generalize Einsteins formula for the probability of a fluctuation to occur by means of the maximum statistical entropy method. The use of the proposed transformation of variables also shows that fluctuations within Tsallis statistics can be mapped to those of standard statistical mechanics.
Resumo:
Clusters of galaxies are the most impressive gravitationally-bound systems in the universe, and their abundance (the cluster mass function) is an important statistic to probe the matter density parameter (Omega(m)) and the amplitude of density fluctuations (sigma(8)). The cluster mass function is usually described in terms of the Press-Schecther (PS) formalism where the primordial density fluctuations are assumed to be a Gaussian random field. In previous works we have proposed a non-Gaussian analytical extension of the PS approach with basis on the q-power law distribution (PL) of the nonextensive kinetic theory. In this paper, by applying the PL distribution to fit the observational mass function data from X-ray highest flux-limited sample (HIFLUGCS), we find a strong degeneracy among the cosmic parameters, sigma(8), Omega(m) and the q parameter from the PL distribution. A joint analysis involving recent observations from baryon acoustic oscillation (BAO) peak and Cosmic Microwave Background (CMB) shift parameter is carried out in order to break these degeneracy and better constrain the physically relevant parameters. The present results suggest that the next generation of cluster surveys will be able to probe the quantities of cosmological interest (sigma(8), Omega(m)) and the underlying cluster physics quantified by the q-parameter.
Resumo:
In a microscopic setting, humans behave in rich and unexpected ways. In a macroscopic setting, however, distinctive patterns of group behavior emerge, leading statistical physicists to search for an underlying mechanism. The aim of this dissertation is to analyze the macroscopic patterns of competing ideas in order to discern the mechanics of how group opinions form at the microscopic level. First, we explore the competition of answers in online Q&A (question and answer) boards. We find that a simple individual-level model can capture important features of user behavior, especially as the number of answers to a question grows. Our model further suggests that the wisdom of crowds may be constrained by information overload, in which users are unable to thoroughly evaluate each answer and therefore tend to use heuristics to pick what they believe is the best answer. Next, we explore models of opinion spread among voters to explain observed universal statistical patterns such as rescaled vote distributions and logarithmic vote correlations. We introduce a simple model that can explain both properties, as well as why it takes so long for large groups to reach consensus. An important feature of the model that facilitates agreement with data is that individuals become more stubborn (unwilling to change their opinion) over time. Finally, we explore potential underlying mechanisms for opinion formation in juries, by comparing data to various types of models. We find that different null hypotheses in which jurors do not interact when reaching a decision are in strong disagreement with data compared to a simple interaction model. These findings provide conceptual and mechanistic support for previous work that has found mutual influence can play a large role in group decisions. In addition, by matching our models to data, we are able to infer the time scales over which individuals change their opinions for different jury contexts. We find that these values increase as a function of the trial time, suggesting that jurors and judicial panels exhibit a kind of stubbornness similar to what we include in our model of voting behavior.
Resumo:
In this Contribution we show that a suitably defined nonequilibrium entropy of an N-body isolated system is not a constant of the motion, in general, and its variation is bounded, the bounds determined by the thermodynamic entropy, i.e., the equilibrium entropy. We define the nonequilibrium entropy as a convex functional of the set of n-particle reduced distribution functions (n ? N) generalizing the Gibbs fine-grained entropy formula. Additionally, as a consequence of our microscopic analysis we find that this nonequilibrium entropy behaves as a free entropic oscillator. In the approach to the equilibrium regime, we find relaxation equations of the Fokker-Planck type, particularly for the one-particle distribution function.
Resumo:
A regularization method based on the non-extensive maximum entropy principle is devised. Special emphasis is given to the q=1/2 case. We show that, when the residual principle is considered as constraint, the q=1/2 generalized distribution of Tsallis yields a regularized solution for bad-conditioned problems. The so devised regularized distribution is endowed with a component which corresponds to the well known regularized solution of Tikhonov (1977).
Resumo:
The climate belongs to the class of non-equilibrium forced and dissipative systems, for which most results of quasi-equilibrium statistical mechanics, including the fluctuation-dissipation theorem, do not apply. In this paper we show for the first time how the Ruelle linear response theory, developed for studying rigorously the impact of perturbations on general observables of non-equilibrium statistical mechanical systems, can be applied with great success to analyze the climatic response to general forcings. The crucial value of the Ruelle theory lies in the fact that it allows to compute the response of the system in terms of expectation values of explicit and computable functions of the phase space averaged over the invariant measure of the unperturbed state. We choose as test bed a classical version of the Lorenz 96 model, which, in spite of its simplicity, has a well-recognized prototypical value as it is a spatially extended one-dimensional model and presents the basic ingredients, such as dissipation, advection and the presence of an external forcing, of the actual atmosphere. We recapitulate the main aspects of the general response theory and propose some new general results. We then analyze the frequency dependence of the response of both local and global observables to perturbations having localized as well as global spatial patterns. We derive analytically several properties of the corresponding susceptibilities, such as asymptotic behavior, validity of Kramers-Kronig relations, and sum rules, whose main ingredient is the causality principle. We show that all the coefficients of the leading asymptotic expansions as well as the integral constraints can be written as linear function of parameters that describe the unperturbed properties of the system, such as its average energy. Some newly obtained empirical closure equations for such parameters allow to define such properties as an explicit function of the unperturbed forcing parameter alone for a general class of chaotic Lorenz 96 models. We then verify the theoretical predictions from the outputs of the simulations up to a high degree of precision. The theory is used to explain differences in the response of local and global observables, to define the intensive properties of the system, which do not depend on the spatial resolution of the Lorenz 96 model, and to generalize the concept of climate sensitivity to all time scales. We also show how to reconstruct the linear Green function, which maps perturbations of general time patterns into changes in the expectation value of the considered observable for finite as well as infinite time. Finally, we propose a simple yet general methodology to study general Climate Change problems on virtually any time scale by resorting to only well selected simulations, and by taking full advantage of ensemble methods. The specific case of globally averaged surface temperature response to a general pattern of change of the CO2 concentration is discussed. We believe that the proposed approach may constitute a mathematically rigorous and practically very effective way to approach the problem of climate sensitivity, climate prediction, and climate change from a radically new perspective.