932 resultados para Neutron powder diffraction (NPD)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Powder X-ray diffraction data for a new palladium(II) amino acid complex, of composition PdC12H2ON2O4S2, are presented in this paper. Orthorhombic cell parameters are: a = 10.740 angstrom, b = 19.999 angstrom, and c = 5.2470 angstrom. (c) 2004 International Centre for Diffraction Data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Powder X-ray diffraction data for methionine sulfoxide, C5H11NO3S, obtained from the commercial amino acid, are presented in this work. Monoclinic cell parameters are: a = 15.500 Angstrom; b = 3.820 Angstrom; c = 13.490 Angstrom; 8=97.300 degrees. (C) 2001 International Centre for Diffraction Data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synchrotron X-ray powder diffraction (XRPD) data were collected for the silver(I)-aspartame complex [Ag(C14H17N2O5)]center dot 1/2 H2O. The complex was obtained from a stoichiometric mixture of aspartame (3-amino-N-(alpha-carboxyphenethyl)-succinamic acid N-methyl ester, C14H18N2O5), Na2CO3, and AgNO3. Indexing using Crysfire and Chekcell proposed an orthorhombic unit cell with space group P222(1). The lattice parameters are a = 12.4750(1) angstrom, b = 21.60614(14) angstrom, and c = 4.88888(9) angstrom. (C) 2006 International Centre for Diffraction Data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray powder diffraction data collected for the complex silver(I) cyclamate [Ag(C6H12NO3S)] are reported. This material was obtained from a stoichiometric mixture of sodium cyclamate and AgNO3. The analysis of the data using the Le Bail method showed that the complex has monoclinic symmetry (space group C2/c). The unit cell parameters are a=31.85852(16) angstrom, b=6.25257(6) angstrom c = 8.46165(7) angstrom, and beta=95.7651(5)degrees. (C) 2007 International Centre for Diffraction Data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nominally pure Gd2O3 C-form structure from basic carbonate fine spherical particles and its differences concerning the XRD data among literature patterns using Rietveld method is reported. Gd2O3: Eu3+ from basic carbonate and Gd2O3 from oxalate were also investigated. All samples, except the one from oxalate precursor, are narrow sized, 100-200 nm. Only non-doped Gd2O3 from basic carbonate presents XRD data with smaller d(hkl) values than the literature ones. From Rietveld refinement, non-doped Gd2O3 from basic carbonate has the smallest crystallite size and from oxalate shows the greatest one. Also, the unit cell parameters indicate a plan contraction of the Gd2O3 from basic carbonate. The presence of Eu3+ increases crystallite size when basic carbonate precursor is used to prepare Gd2O3 and avoids plan contraction. The structural differences observed among Gd2O3 samples obtained are related to the type of precursor and to the presence or not of doping ion. (C) 2003 Elsevier B.V. (USA). All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: The present work uses multivariate statistical analysis as a form of establishing the main sources of error in the Quantitative Phase Analysis (QPA) using the Rietveld method. The quantitative determination of crystalline phases using x ray powder diffraction is a complex measurement process whose results are influenced by several factors. Ternary mixtures of Al2O3, MgO and NiO were prepared under controlled conditions and the diffractions were obtained using the Bragg-Brentano geometric arrangement. It was possible to establish four sources of critical variations: the experimental absorption and the scale factor of NiO, which is the phase with the greatest linear absorption coefficient of the ternary mixture; the instrumental characteristics represented by mechanical errors of the goniometer and sample displacement; the other two phases (Al2O3 and MgO); and the temperature and relative humidity of the air in the laboratory. The error sources excessively impair the QPA with the Rietveld method. Therefore it becomes necessary to control them during the measurement procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray single crystal (XSC) and neutron powder diffraction data (NPD) were used to elucidate boron site preference for five ternary phases. Ta3Si1-xBx (x=0.112(4)) crystallizes with the Ti3P-type (space group P4(2)/n) with B-atoms sharing the 8g site with Si atoms. Ta5Si3-x (x=0.03(1); Cr5B3- type) crystallizes with space group 14/mcm, exhibiting a small amount of vacancies on the 4 alpha site. Both, Ta-5(Si1-xBx)(3), X=0.568(3), and Nb-5(Si1-xBx)(3), x=0.59(2), are part of solid solutions of M5Si3 with Cr5B3-type into the ternary M-Si-B systems (M=Nb or Ta) with B replacing Si on the 8h site. The D8(8)-phase in the Nb-Si-B system crystallizes with the Ti5Ga4-type revealing the formula Nb5Si3B1-x (x=0.292(3)) with B partially filling the voids in the 2b site of the Mn5Si3 parent type. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with in-situ time-, temperature- and pressure-resolved synchrotron X-ray powder diffraction investigations of a variety of inorganic compounds with twodimensional layer structures and three-dimensional framework structures. In particular, phase stability, reaction kinetics, thermal expansion and compressibility at non-ambient conditions has been studied for 1) Phosphates with composition MIV(HPO4)2·nH2O (MIV = Ti, Zr); 2) Pyrophosphates and pyrovanadates with composition MIVX2O7 (MIV = Ti, Zr and X = P, V); 3) Molybdates with composition ZrMo2O8. The results are compiled in seven published papers and two manuscripts. Reaction kinetics for the hydrothermal synthesis of α-Ti(HPO4)2·H2O and intercalation of alkane diamines in α-Zr(HPO4)2·H2O was studied using time-resolved experiments. In the high-temperature transformation of γ-Ti(PO4)(H2PO4)·2H2O to TiP2O7 three intermediate phases, γ'-Ti(PO4)(H2PO4)·(2-x)H2O, β-Ti(PO4)(H2PO4) and Ti(PO4)(H2P2O7)0.5 were found to crystallise at 323, 373 and 748 K, respectively. A new tetragonal three-dimensional phosphate phase called τ-Zr(HPO4)2 was prepared, and subsequently its structure was determined and refined using the Rietveld method. In the high-temperature transformation from τ-Zr(HPO4)2 to cubic α-ZrP2O7 two new orthorhombic intermediate phases were found. The first intermediate phase, ρ-Zr(HPO4)2, forms at 598 K, and the second phase, β-ZrP2O7, at 688 K. Their respective structures were solved using direct methods and refined using the Rietveld method. In-situ high-pressure studies of τ-Zr(HPO4)2 revealed two new phases, tetragonal ν-Zr(HPO4)2 and orthorhombic ω-Zr(HPO4)2 that crystallise at 1.1 and 8.2 GPa. The structure of ν-Zr(HPO4)2 was solved and refined using the Rietveld method. The high-pressure properties of the pyrophosphates ZrP2O7 and TiP2O7, and the pyrovanadate ZrV2O7 were studied up to 40 GPa. Both pyrophosphates display smooth compression up to the highest pressures, while ZrV2O7 has a phase transformation at 1.38 GPa from cubic to pseudo-tetragonal β-ZrV2O7 and becomes X-ray amorphous at pressures above 4 GPa. In-situ high-pressure studies of trigonal α-ZrMo2O8 revealed the existence of two new phases, monoclinic δ-ZrMo2O8 and triclinic ε-ZrMo2O8 that crystallises at 1.1 and 2.5 GPa, respectively. The structure of δ-ZrMo2O8 was solved by direct methods and refined using the Rietveld method.