953 resultados para Neurotransmitter receptors


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In human beings of both sexes, dehydroepiandrosterone sulfate (DHEAS) circulating in blood is mostly an adrenally secreted steroid whose serum concentration (in the micromolar range and 30–50% higher in men than in women) decreases with age, toward ≈20–10% of its value in young adults during the 8th and 9th decades. The mechanism of action of DHEA and DHEAS is poorly known and may include partial transformation into sex steroids, increase of bioavailable insulin-like growth factor I, and effects on neurotransmitter receptors. Whether there is a cause-to-effect relationship between the decreasing levels of DHEAS with age and physiological and pathological manifestations of aging is still undecided, but this is of obvious theoretical and practical interest in view of the easy restoration by DHEA administration. Here we report on 622 subjects over 65 years of age, studied for the 4 years since DHEAS baseline values had been obtained, in the frame of the PAQUID program, analyzing the functional, psychological, and mental status of a community-based population in the south-west of France. We confirm the continuing decrease of DHEAS serum concentration with age, more in men than in women, even if men retain higher levels. Significantly lower values of baseline DHEAS were recorded in women in cases of functional limitation (Instrumental Activities of Daily Living), confinement, dyspnea, depressive symptomatology, poor subjective perception of health and life satisfaction, and usage of various medications. In men, there was a trend for the same correlations, even though not statistically significant in most categories. No differences in DHEAS levels were found in cases of incident dementia in the following 4 years. In men (but not in women), lower DHEAS was significantly associated with increased short-term mortality at 2 and 4 years after baseline measurement. These results, statistically established by taking into account corrections for age, sex, and health indicators, suggest the need for further careful trials of the administration of replacement doses of DHEA in aging humans. Indeed, the first noted results of such “treatment” are consistent with correlations observed here between functional and psychological status and endogenous steroid serum concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several scaffold proteins for neurotransmitter receptors have been identified as candidates for receptor targeting. However, the molecular mechanism underlying such receptor clustering and targeting to postsynaptic specializations remains unknown. PSD-Zip45 (also named Homer 1c/vesl-1L) consists of the NH2 terminus containing the enabled/VASP homology 1 domain and the COOH terminus containing the leucine zipper. Here, we demonstrate immunohistochemically that metabotropic glutamate receptor 1α (mGluR1α) and PSD-Zip45/Homer 1c are colocalized to synapses in the cerebellar molecular layer but not in the hippocampus. In cultured hippocampal neurons, PSD-Zip45/Homer1c and N-methyl-d-aspartate receptors are preferentially colocalized to dendritic spines. Cotransfection of mGluR1α or mGluR5 and PSD-Zip45/Homer 1c into COS-7 cells results in mGluR clustering induced by PSD-Zip45/Homer 1c. An in vitro multimerization assay shows that the extreme COOH-terminal leucine zipper is involved in self-multimerization of PSD-Zip45/Homer 1c. A clustering assay of mGluRs in COS-7 cells also reveals a critical role of this leucine-zipper motif of PSD-Zip45/Homer 1c in mGluR clustering. These results suggest that the leucine zipper of subsynaptic scaffold protein is a candidate motif involved in neurotransmitter receptor clustering at the central synapse.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gephyrin is essential for both the postsynaptic localization of inhibitory neurotransmitter receptors in the central nervous system and the biosynthesis of the molybdenum cofactor (Moco) in different peripheral organs. Several alternatively spliced gephyrin transcripts have been identified in rat brain that differ in their 5′ coding regions. Here, we describe gephyrin splice variants that are differentially expressed in non-neuronal tissues and different regions of the adult mouse brain. Analysis of the murine gephyrin gene indicates a highly mosaic organization, with eight of its 29 exons corresponding to the alternatively spliced regions identified by cDNA sequencing. The N- and C-terminal domains of gephyrin encoded by exons 3–7 and 16–29, respectively, display sequence similarities to bacterial, invertebrate, and plant proteins involved in Moco biosynthesis, whereas the central exons 8, 13, and 14 encode motifs that may mediate oligomerization and tubulin binding. Our data are consistent with gephyrin having evolved from a Moco biosynthetic protein by insertion of protein interaction sequences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of oleamide, an amidated lipid isolated from the cerebrospinal fluid of sleep-deprived cats, on serotonin receptor-mediated responses were investigated in cultured mammalian cells. In rat P11 cells, which endogenously express the 5-hydroxytryptamine2A (5HT2A) receptor, oleamide significantly potentiated 5HT-induced phosphoinositide hydrolysis. In HeLa cells expressing the 5HT7 receptor subtype, oleamide caused a concentration-dependent increase in cAMP accumulation but with lower efficacy than that observed by 5HT. This effect was not observed in untransfected HeLa cells. Clozapine did not prevent the increase in cAMP elicited by oleamide, and ketanserin caused an ≈65% decrease. In the presence of 5HT, oleamide had the opposite effect on cAMP, causing insurmountable antagonism of the concentration-effect curve to 5HT, but had no effect on cAMP levels elicited by isoproterenol or forskolin. These results indicate that oleamide can modulate 5HT-mediated signal transduction at different subtypes of mammalian 5HT receptors. Additionally, our data indicate that oleamide acts at an apparent allosteric site on the 5HT7 receptor and elicits functional responses via activation of this site. This represents a unique mechanism of activation for 5HT G protein-coupled receptors and suggests that G protein-coupled neurotransmitter receptors may act like their iontropic counterparts (i.e., γ-aminobutyric acid type A receptors) in that there may be several binding sites on the receptor that regulate functional activity with varying efficacies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Channel-linked neurotransmitter receptors are membrane-bound heterooligomers made up of distinct, although homologous, subunits. They mediate chemo-electrical signal transduction and its regulation via interconversion between multiple conformations that exhibit distinct pharmacological properties and biological activities. The large diversity of functional properties and the widely pleiotropic phenotypes, which arise from point mutations in their subunits (or from subunit substitutions), are interpreted in terms of an allosteric model that incorporates multiple discrete conformational states. The model predicts that three main categories of phenotypes may result from point mutations, altering selectively one (or more) of the following features: (i) the properties of individual binding sites (K phenotype), (ii) the biological activity of the ion channel (gamma phenotype) of individual conformations, or (iii) the isomerization constants between receptor conformations (L phenotype). Several nicotinic acetylcholine and glycine receptor mutants with complex phenotypes are quantitatively analyzed in terms of the model, and the analogies among phenotypes are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A crude extract from ginseng root inhibits high-threshold, voltage-dependent Ca2+ channels through an unknown receptor linked to a pertussis toxin-sensitive G protein. We now have found the particular compound that seems responsible for the effect: it is a saponin, called ginsenoside Rf (Rf), that is present in only trace amounts within ginseng. At saturating concentrations, Rf rapidly and reversibly inhibits N-type, and other high-threshold, Ca2+ channels in rat sensory neurons to the same degree as a maximal dose of opioids. The effect is dose-dependent (half-maximal inhibition: 40 microM) and it is virtually eliminated by pretreatment of the neurons with pertussis toxin, an inhibitor of G(o) and Gi GTP-binding proteins. Other ginseng saponins--ginsenosides Rb1, Rc, Re, and Rg1--caused relatively little inhibition of Ca2+ channels, and lipophilic components of ginseng root had no effect. Antagonists of a variety of neurotransmitter receptors that inhibit Ca2+ channels fail to alter the effect of Rf, raising the possibility that Rf acts through another G protein-linked receptor. Rf also inhibits Ca2+ channels in the hybrid F-11 cell line, which might, therefore, be useful for molecular characterization of the putative receptor for Rf. Because it is not a peptide and it shares important cellular and molecular targets with opioids, Rf might be useful in itself or as a template for designing additional modulators of neuronal Ca2+ channels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to investigate the expression of vascular endothelial growth factor type C (VEGF-C) in oral squamous cell carcinoma (OSCC) cell lines through norepinephrine-induced activation of beta-adrenergic receptors. Human OSCC cell lines (SCC-9 and SCC-25) expressing beta-adrenergic receptors were stimulated with different concentrations of norepinephrine (0.1, 1, and 10 μM) and 1 μM of propranolol, and analyzed after 1, 6, and 24 h. VEGF-C gene expression and VEGF-C production in the cell supernatant were evaluated by real-time PCR and by ELISA, respectively. The results showed that beta-adrenergic receptor stimulation by different concentrations of norepinephrine or blocking by propranolol did not markedly alter VEGF-C expression by SCC-9 and SCC-25 cells. VEGF-C protein levels produced by oral malignant cell lines after stimulation with different norepinephrine concentrations or blocking with propranolol was statistically similar (p > 0.05) to those of the control group (nonstimulated OSCC cell lines). Our findings suggest that stimulation of beta-adrenergic receptors by means of norepinephrine does not seem to modulate the VEGF-C expression in OSCC cell lines. These findings reinforce the need for further studies in order to understand the responsiveness of oral cancer to beta-adrenergic receptor stimulation or blockage, especially with regard to VEGF-C production. © 2012 International Society of Oncology and BioMarkers (ISOBM).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to investigate the expression of vascular endothelial growth factor type C (VEGF-C) in oral squamous cell carcinoma (OSCC) cell lines through norepinephrine-induced activation of beta-adrenergic receptors. Human OSCC cell lines (SCC-9 and SCC-25) expressing beta-adrenergic receptors were stimulated with different concentrations of norepinephrine (0.1, 1, and 10 μM) and 1 μMof propranolol, and analyzed after 1, 6, and 24 h. VEGF-C gene expression and VEGF-C production in the cell supernatant were evaluated by real-time PCR and by ELISA, respectively. The results showed that beta-adrenergic receptor stimulation by different concentrations of norepinephrine or blocking by propranolol did not markedly alter VEGF-C expression by SCC-9 and SCC-25 cells. VEGF-C protein levels produced by oral malignant cell lines after stimulation with different norepinephrine concentrations or blocking with propranolol was statistically similar (p>0.05) to those of the control group (nonstimulated OSCC cell lines). Our findings suggest that stimulation of beta-adrenergic receptors by means of norepinephrine does not seem to modulate the VEGF-C expression in OSCC cell lines. These findings reinforce the need for further studies in order to understand the responsiveness of oral cancer to beta-adrenergic receptor stimulation or blockage, especially with regard to VEGF-C production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent evidence suggests that dopamine, acting via its D1 receptors, may function as a neurotransmitter in intrahypothalamic pathways involved in the stimulation of prolactin secretion. Functional dopamine D1 receptors are present in the ventromedial hypothalamic nucleus (VMH) and we hypothesized that they might be part of a prolactin-stimulatory pathway activated by stress. We tested this hypothesis in a series of experiments on sheep involving two different forms of stressors, audiovisual (barking dog) and high environmental temperature. We attempted to block the stimulation of prolactin secretion by infusion into the VMH of an antagonist specific for the D1 receptor. Ovariectomised, oestradiol-implanted merino ewes were surgically implanted with bilateral guide tubes directed at the VMH. After a 180 min pretreatment period, the ewes either were or were not exposed to a stressor (30 min of barking dog or 120 min at 35 degrees C, 65% relative humidity). D1 receptor antagonist, SCH23390 or vehicle (0.9% saline) was infused into the VMH (1.7 mu l/h, 120 nmol/h) for 60 min prior to and during the stressor period. Blood was sampled every 15 min via jugular cannulae and the plasma was assayed for prolactin, cortisol and growth hormone (GH). Both stressors significantly increased prolactin concentrations over control levels. SCH23390 infusion significantly attenuated the prolactin response to high environmental temperature, but had no effect on the prolactin response to audiovisual stress. Cortisol concentrations were significantly increased by audiovisual stress only and were not affected by SCH23390, GH concentrations were not changed by either stressor or infusion. Drug infusion alone did not affect the concentration of the hormones. The data suggest that the VMH D1 receptors are involved in a prolactin stimulatory pathway in response to high environmental temperature. The inability of the D1 antagonist to affect the response to the barking dog indicates that this pathway is stress-specific, implying that there is more than one mechanism or pathway involved in the prolactin response to different stressors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lateral septal area (LSA) is a part of the limbic system and is involved in cardiovascular modulation. We previously reported that microinjection of noradrenaline (NA) into the LSA of unanesthetized rats caused pressor responses that are mediated by acute vasopressin release. Magnocellular neurons of the paraventricular (PVN) and supraoptic (SON) of the hypothalamus synthesize vasopressin. In the present work, we studied which of these nuclei is involved in the pressor pathway activated by unilateral NA injection into the LSA as well as the local neurotransmitter involved. Chemical ablation of the SON by unilateral injection of the nonspecific synapses blocker cobalt chloride (1 mM/100 nl) did not affect the pressor response evoked by NA (21 nmol/200 nl) microinjection into the LSA. However, the response to NA was blocked when cobalt chloride (1 mM/100 nl) was microinjected into the PVN, indicating that this hypothalamic nucleus is responsible for the mediation of the pressor response. There is evidence in the literature pointing to glutamate as a putative neurotransmitter activating magnocellular neurons. Pretreatment of the PVN with the selective non-N-methyl-D-asparate (NMDA) antagonist NBQX (2 nmol/100 nl) blocked the pressor response to NA microinjected into the LSA, whereas pretreatment with the selective NMDA antagonist LY235959 (2 nmol/100 nl) did not affect the response to NA. Our results implicate the PVN as the final structure in the pressor pathway activated by the microinjection of NA into the LSA. They also indicate that local glutamatergic synapses and non-NMDA glutamatergic receptors mediate the response in the PVN. (c) 2008 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cannabidiol (CBD) is a major nonpsychotomimetic component of Cannabis sativa that has been shown to have an anxiolytic effect in human and animal models. Earlier studies suggest that these effects involve facilitation of serotonin, a neurotransmitter that has also been related to obsessive-compulsive disorder. On the basis of this evidence, this study investigated the effects of CBD in C57BL/6J mice submitted to the marble-burying test (MBT), an animal model proposed to reflect compulsive behaviour. CBD (15, 30 and 60 mg/kg) induced a significant decrease in the number of buried marbles compared with controls (34, 41 and 48%, respectively). A similar, although larger, decrease was also found after the serotonin selective reuptake inhibitor paroxetine (10 mg/kg, 77% decrease) and the benzodiazepine diazepam (2.5 mg/kg, 84% decrease). The effect of CBD (30 mg/kg) was still significant after 7 days of daily repeated administration, whereas the effect of diazepam disappeared. Pretreatment with WAY100635 (3 mg/kg), a 5HT1A receptor antagonist, prevented the effects of paroxetine but failed to alter those of CBD. These latter effects, however, were prevented by pretreatment with the CB1 receptor antagonist AM251 (1 mg/kg). These results indicated that CBD and paroxetine decrease the number of buried marbles in the MBT through distinct pharmacological mechanisms. They also suggest a potential role of drugs acting on the cannabinoid system in modulating compulsive behaviour. Behavioural Pharmacology 21: 353-358 (C) 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microinjection of noradrenaline into the bed nucleus of the stria terminalis (BST) has been reported to cause a pressor response in unanesthetized rats, which was shown to be mediated by acute vasopressin release into the systemic circulation. In the present study we verified the involvement of magnocellular neurons of the hypothalamic paraventricular (PVN) or supraoptic (SON) nuclei and the local neurotransmitter involved in the pressor response to noradrenaline microinjection into the BST. The PVN pretreatment with the non-selective neurotransmission blocker CoCl(2) (1 nmol/100 nL) inhibited the noradrenaline-evoked pressor response. However, responses were not affected by SON treatment with CoCl(2). Further experiments were carried out to test if glutamatergic neurotransmission in the PVN mediates the pressor response evoked by noradrenaline microinjection into the BST. Pretreatment of the PVN with the selective N-methyl-d-aspartate (NMDA) receptor antagonist LY235959 (2 nmol/100 nL) did not affect the noradrenaline-evoked pressor response. However, PVN pretreatment with the selective non-NMDA receptor antagonist NBQX (2 nmol/100 nL) significantly reduced the pressor response to noradrenaline microinjection into the BST. In conclusion, our results suggest that pressor responses to noradrenaline microinjection into the BST are mediated by PVN magnocellular neurons without involvement of SON neurons. They also suggest that a glutamatergic neurotransmission through non-NMDA glutamate receptors in the PVN mediates the response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several pieces of evidence suggest that sleep deprivation causes marked alterations in neurotransmitter receptor function in diverse neuronal cell types. To date, this has been studied mainly in wake- and sleep-promoting areas of the brain and in the hippocampus, which is implicated in learning and memory. This article reviews findings linking sleep deprivation to modifications in neurotransmitter receptor function, including changes in receptor subunit expression, ligand affinity and signal transduction mechanisms. We focus on studies using sleep deprivation procedures that control for side-effects such as stress. We classify the changes with respect to their functional consequences on the activity of wake-promoting and/or sleep-promoting systems. We suggest that elucidation of how sleep deprivation affects neurotransmitter receptor function will provide functional insight into the detrimental effects of sleep loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract : GABA, the primary inhibitory neurotransmitter, and its receptors play an important role in modulating neuronal activity in the central nervous system and are implicated in many neurological disorders. In this study, GABAA and GABAB receptor subunit expression was visualized by immunohistochemistry in human auditory areas TC (= primary auditory area), TB, and TA. Both hemispheres from nine neurologically normal subjects and from four patients with subacute or chronic stroke were included. In normal brains, GABAA receptor subunit (α1, α2, & β2/3) labeling produced neuropil staining throughout all cortical layers as well as labeling fibers and neurons in layer VI for all auditory areas. Densitometry profiles displayed differences in GABAA subunit expression between primary and non-primary areas. In contrast to the neuropil labeling of GABAA subunits, GABAB1 and GABAB2 subunit immunoreactivity was revealed on neuronal somata and proximal dendritic shafts of pyramidal and non-pyramidal neurons in layers II-III, more strongly on supra- than in infragranular layers. No differences were observed between auditory areas. In stroke cases, we observed a downregulation of the GABAA receptor α2 subunit in granular and infragranular layers, while the other GABAA and the two GABAB receptor subunits remained unchanged. Our results demonstrate a strong presence of GABAA and GABAB receptors in the human auditory cortex, suggesting a crucial role of GABA in shaping auditory responses in the primary and non-primary auditory areas. The differential laminar and area expression of GABAA subunits that we have found in the auditory areas and which is partially different from that in other cortical areas speaks in favor of a fine turning of GABA-ergic transmission in these different compartments. In contrast, GABAB expression displayed laminar, but not areal differences; its basic pattern was also very similar to that of other cortical areas, suggesting a more uniform role within the cerebral cortex. In subacute and chronic stroke, the selective GABAA α2 subunit downregulation is likely to influence postlesional plasticity and susceptibility to medication. The absence of changes in the GABAB receptors suggests different regulation than in other pathological conditions, such as epilepsy, schizophrenia or bipolar disorder, in which a downregulation has been reported. Résumé : GABA, le principal neurotransmetteur inhibiteur, et ses récepteurs jouent un rôle important en tant que modulateur de l'activité neuronale dans le système nerveux central et sont impliqués dans de nombreux désordres neurologiques. Dans cette étude, l'expression des sous-unités des récepteur GABAA et GABAB a été visualisée par immunohistochimie dans les aires auditives du cortex humains: le TC (= aire auditif primaire), le TB, et le TA. Les deux hémisphères de neuf sujets considérés normaux du point de vue neurologique et de quatre patients ayant subis un accident cérébro-vasculaire et se trouvant dans la phase subaiguë ou chronique étaient inclues. Dans les cerveaux normaux, les immunohistochimies contre les sous-unités α1, α2, & β2/3 du récepteur GABAA ont marqué le neuropil dans toutes les couches corticales ainsi que les fibres et les neurones de la couche VI dans toutes les aires auditives. Le profile densitométrique montre des différences dans l'expression des sous-unités du récepteur GABAA entre les aires primaires et non-primaires. Contrairement au marquage de neuropil par les sous-unités du recepteur GABAA, 1'immunoréactivité des sous-unités GABAB1 et GABAB2 a été révélée sur les corps cellulaires neuronaux et les dendrites proximaux des neurones pyramidaux et non-pyramidaux dans les couches II-III et est plus dense dans les couches supragranulaires que dans les couches infragranulaires. Aucune différence n'a été observée entre les aires auditives. Dans des cas lésionnels, nous avons observé une diminution de la sous-unité α2 du récepteur GABAA dans les couches granulaires et infragranulaires, alors que le marquage des autres sous-unités du récepteur GABAA et des deux sous-unités de récepteur GABAB reste inchangé. Nos résultats démontrent une présence forte des récepteurs GABAA et GABAB dans le cortex auditif humain, suggérant un rôle crucial du neurotransmetteur GABA dans la formation de la réponse auditive dans les aires auditives primaires et non-primaires. L'expression différentielle des sous-unités de GABAA entre les couches corticales et entre les aires auditives et qui est partiellement différente de celle observée dans d'autres aires corticales préconise une modulation fine de la transmission GABA-ergic en ces différents compartiments. En revanche, l'expression de GABAB a montré des différences laminaires, mais non régionales ; son motif d'expression de base est également très semblable à celui d'autres aires corticales, suggérant un rôle plus uniforme dans le cortex cérébral. Dans les phases subaiguë et chronique des accidents cérébro-vasculaires, la diminution sélective de la sous-unité α2 du recepteur GABAA est susceptible d'influencer la plasticité et la susceptibilité postlésionnelle au médicament. L'absence de changement pour les récepteurs GABAB suggère que le récepteur est régulé différemment après un accident cerebro-vasculaire par rapport à d'autres conditions pathologiques, telles que l'épilepsie, la schizophrénie ou le désordre bipolaire, dans lesquels une diminution de ces sous-unités a été rapportée.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using immunocytochemistry and multiunit recording of afferent activity of the whole vestibular nerve, we investigated the role of metabotropic glutamate receptors (mGluR) in the afferent neurotransmission in the frog semicircular canals (SCC). Group I (mGluR1alpha) and group II (mGluR2/3) mGluR immunoreactivities were distributed to the vestibular ganglion neurons, and this can be attributed to a postsynaptic locus of metabotropic regulation of rapid excitatory transmission. The effects of group I/II mGluR agonist (1S,3R)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD) and antagonist (R,S)-alpha-methyl-4-carboxyphenylglycine (MCPG) on resting and chemically induced afferent activity were studied. ACPD (10-100 microM) enhanced the resting discharge frequency. MCPG (5-100 microM) led to a concentration-dependent decrease of both resting activity and ACPD-induced responses. If the discharge frequency had previously been restored by L-glutamate (L-Glu) in high-Mg2+ solution, ACPD elicited a transient increase in the firing rate in the afferent nerve suggesting that ACPD acts on postsynaptic receptors. The L-Glu agonists, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA), were tested during application of ACPD. AMPA- and NMDA-induced responses were higher in the presence than absence of ACPD, implicating mGluR in the modulation of ionotropic glutamate receptors. These results indicate that activation of mGluR potentiates AMPA and NMDA responses through a postsynaptic interaction. We conclude that ACPD may exert modulating postsynaptic effects on vestibular afferents and that this process is activity-dependent.