975 resultados para Netherlands Architecture Institute
Resumo:
Three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared by stereolithography. A photo-polymerisable liquid resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Hydrogels with welldefined architectures and good mechanical properties were prepared. Hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated on these materials.
Resumo:
Pore architecture of scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for the seeded cells to organize into a functioning tissue. In this report, we investigated the effects of different concentration on silk fibroin protein 3D scaffold pore microstructure. Four pore size ranges of silk fibroin scaffolds were made by freeze-dry technique, with the pore sizes ranging from 50 to 300 µm. The pore size of the scaffold decreases as the concentration increases. Human mesenchymal stem cells were in vitro cultured in these scaffolds. After BMP7 gene transferred, DNA assay, ALP assay, hematoxylin–eosin staining, alizarin red staining and reverse transcription-polymerase chain reaction were performed to analyze the effect of the pore size on cell growth, differentiation and the secretion of extracellular matrix (ECM). Cell morphology in these 3D scaffolds was investigated by confocal microscopy. This study indicates mesenchymal stem cells prefer the group of scaffolds with pore size between 100 and 300 µm for better proliferation and ECM production
Resumo:
New-generation biomaterials for bone regenerations should be highly bioactive, resorbable and mechanically strong. Mesoporous bioactive glass (MBG), as a novel bioactive material, has been used for the study of bone regeneration due to its excellent bioactivity, degradation and drug-delivery ability; however, how to construct a 3D MBG scaffold (including other bioactive inorganic scaffolds) for bone regeneration still maintains a significant challenge due to its/their inherit brittleness and low strength. In this brief communication, we reported a new facile method to prepare hierarchical and multifunctional MBG scaffolds with controllable pore architecture, excellent mechanical strength and mineralization ability for bone regeneration application by a modified 3D-printing technique using polyvinylalcohol (PVA), as a binder. The method provides a new way to solve the commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore architecture, low strength, high brittleness and the requirement for the second sintering at high temperature. The obtained 3D-printing MBG scaffolds possess a high mechanical strength which is about 200 times for that of traditional polyurethane foam template-resulted MBG scaffolds. They have highly controllable pore architecture, excellent apatite-mineralization ability and sustained drug-delivery property. Our study indicates that the 3D-printed MBG scaffolds may be an excellent candidate for bone regeneration.
Resumo:
Notwithstanding the obvious potential advantages of information and communications technology (ICT) in the enhanced provision of healthcare services, there are some concerns associated with integration of and access to electronic health records. A security violation in health records, such as an unauthorised disclosure or unauthorised alteration of an individual's health information, can significantly undermine both healthcare providers' and consumers' confidence and trust in e-health systems. A crisis in confidence in any national level e-health system could seriously degrade the realisation of the system's potential benefits. In response to the privacy and security requirements for the protection of health information, this research project investigated national and international e-health development activities to identify the necessary requirements for the creation of a trusted health information system architecture consistent with legislative and regulatory requirements and relevant health informatics standards. The research examined the appropriateness and sustainability of the current approaches for the protection of health information. It then proposed an architecture to facilitate the viable and sustainable enforcement of privacy and security in health information systems under the project title "Open and Trusted Health Information Systems (OTHIS)". OTHIS addresses necessary security controls to protect sensitive health information when such data is at rest, during processing and in transit with three separate and achievable security function-based concepts and modules: a) Health Informatics Application Security (HIAS); b) Health Informatics Access Control (HIAC); and c) Health Informatics Network Security (HINS). The outcome of this research is a roadmap for a viable and sustainable architecture for providing robust protection and security of health information including elucidations of three achievable security control subsystem requirements within the proposed architecture. The successful completion of two proof-of-concept prototypes demonstrated the comprehensibility, feasibility and practicality of the HIAC and HIAS models for the development and assessment of trusted health systems. Meanwhile, the OTHIS architecture has provided guidance for technical and security design appropriate to the development and implementation of trusted health information systems whilst simultaneously offering guidance for ongoing research projects. The socio-economic implications of this research can be summarised in the fact that this research embraces the need for low cost security strategies against economic realities by using open-source technologies for overall test implementation. This allows the proposed architecture to be publicly accessible, providing a platform for interoperability to meet real-world application security demands. On the whole, the OTHIS architecture sets a high level of security standard for the establishment and maintenance of both current and future health information systems. This thereby increases healthcare providers‘ and consumers‘ trust in the adoption of electronic health records to realise the associated benefits.
Resumo:
Objective To determine the test-retest reliability of measurements of thickness, fascicle length (Lf) and pennation angle (θ) of the vastus lateralis (VL) and gastrocnemius medialis (GM) muscles in older adults. Participants Twenty-one healthy older adults (11 men and ten women; average age 68·1 ± 5·2 years) participated in this study. Methods Ultrasound images (probe frequency 10 MHz) of the VL at two sites (VL site 1 and 2) were obtained with participants seated with knee at 90º flexion. For GM measures, participants lay prone with ankle fixed at 15º dorsiflexion. Measures were taken on two separate occasions, 7 days apart (T1 and T2). Results The ICCs (95% CI) were: VL site 1 thickness = 0·96(0·90–0·98); VL site 2 thickness = 0·96(0·90–0·98), VL θ = 0·87(0·68–0·95), VL Lf = 0·80(0·50–0·92), GM thickness = 0·97(0·92–0·99), GM θ = 0·85(0·62–0·94) and GM Lf =0·90(0·75–0·96). The 95% ratio limits of agreement (LOAs) for all measures, calculated by multiplying the standard deviation of the ratio of the results between T1 and T2 by 1·96, ranged from 10·59 to 38·01%. Conclusion The ability of these tests to determine a real change in VL and GM muscle architecture is good on a group level but problematic on an individual level as the relatively large 95% ratio LOAs in the current study may encompass the changes in architecture observed in other training studies. Therefore, the current findings suggest that B-mode ultrasonography can be used with confidence by researchers when investigating changes in muscle architecture in groups of older adults, but its use is limited in showing changes in individuals over time.
Resumo:
The in vitro and in vivo degradation properties of poly(lactic-co-glycolic acid) (PLGA) scaffolds produced by two different technologies - thermally induced phase separation (TIPS), and solvent casting and particulate leaching (SCPL) were compared. Over 6 weeks, in vitro degradation produced changes in SCPL scaffold dimension, mass, internal architecture and mechanical properties. TIPS scaffolds produced far less changes in these parameters providing significant advantages over SCPL. In vivo results were based on a microsurgically created arteriovenous (AV) loop sandwiched between two TIPS scaffolds placed in a polycarbonate chamber under rat groin skin. Histologically, a predominant foreign body giant cell response and reduced vascularity was evident in tissue ingrowth between 2 and 8 weeks in TIPS scaffolds. Tissue death occurred at 8 weeks in the smallest pores. Morphometric comparison of TIPS and SCPL scaffolds indicated slightly better tissue ingrowth but greater loss of scaffold structure in SCPL scaffolds. Although advantageous in vitro, large surface area:volume ratios and varying pore sizes in PLGA TIPS scaffolds mean that effective in vivo (AV loop) utilization will only be achieved if the foreign body response can be significantly reduced so as to allow successful vascularisation, and hence sustained tissue growth, in pores less than 300 μm. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Critical-sized bone defect regeneration is a remaining clinical concern. Numerous scaffold-based strategies are currently being investigated to enable in vivo bone defect healing. However, a deeper understanding of how a scaffold influences the tissue formation process and how this compares to endogenous bone formation or to regular fracture healing is missing. It is hypothesized that the porous scaffold architecture can serve as a guiding substrate to enable the formation of a structured fibrous network as a prerequirement for later bone formation. An ovine, tibial, 30-mm critical-sized defect is used as a model system to better understand the effect of the scaffold architecture on cell organization, fibrous tissue, and mineralized tissue formation mechanisms in vivo. Tissue regeneration patterns within two geometrically distinct macroscopic regions of a specific scaffold design, the scaffold wall and the endosteal cavity, are compared with tissue formation in an empty defect (negative control) and with cortical bone (positive control). Histology, backscattered electron imaging, scanning small-angle X-ray scattering, and nanoindentation are used to assess the morphology of fibrous and mineralized tissue, to measure the average mineral particle thickness and the degree of alignment, and to map the local elastic indentation modulus. The scaffold proves to function as a guiding substrate to the tissue formation process. It enables the arrangement of a structured fibrous tissue across the entire defect, which acts as a secondary supporting network for cells. Mineralization can then initiate along the fibrous network, resulting in bone ingrowth into a critical-sized defect, although not in complete bridging of the defect. The fibrous network morphology, which in turn is guided by the scaffold architecture, influences the microstructure of the newly formed bone. These results allow a deeper understanding of the mode of mineral tissue formation and the way this is influenced by the scaffold architecture. Copyright © 2012 American Society for Bone and Mineral Research.
Resumo:
Tissue-specific extracellular matrix (ECM) is known to be an ideal bioscaffold to inspire the future of regenerative medicine. It holds the secret of how nature has developed such an organization of molecules into a unique functional complexity. This work exploited an innovative image processing algorithm and high resolution microscopy associated with mechanical analysis to establish a correlation between the gradient organization of cartiligous ECM and its anisotropic biomechanical response. This was hypothesized to be a reliable determinant that can elucidate how microarchitecture interrelates with biomechanical properties. Hough-Radon transform of the ECM cross-section images revealed its conformational variation from tangential interface down to subchondral region. As the orientation varied layer by layer, the anisotropic mechanical response deviated relatively. Although, results were in good agreement (Kendall's tau-b > 90%), there were evidences proposing that alignment of the fibrous network, specifically in middle zone, is not as random as it was previously thought.
Resumo:
The development of the Learning and Teaching Academic Standards Statement for Architecture (the Statement) centred on requirements for the Master of Architecture and proceeded alongside similar developments in the building and construction discipline under the guidance and support of the Australian Deans of Built Environment and Design (ADBED). Through their representation of Australian architecture programs, ADBED have provided high-level leadership for the Learning and Teaching Academic Standards Project in Architecture (LTAS Architecture). The threshold learning outcomes (TLOs), the description of the nature and extent of the discipline, and accompanying notes were developed through wide consultation with the discipline and profession nationally. They have been considered and debated by ADBED on a number of occasions and have, in their fi nal form, been strongly endorsed by the Deans. ADBED formed the core of the Architecture Reference Group (chaired by an ADBED member) that drew together representatives of every peak organisation for the profession and discipline in Australia. The views of the architectural education community and profession have been provided both through individual submissions and the voices of a number of peak bodies. Over two hundred individuals from the practising profession, the academic workforce and the student cohort have worked together to build consensus about the capabilities expected of a graduate of an Australian Master of Architecture degree. It was critical from the outset that the Statement should embrace the wisdom of the greater ‘tribe’, should ensure that graduates of the Australian Master of Architecture were eligible for professional registration and, at the same time, should allow for scope and diversity in the shape of Australian architectural education. A consultation strategy adopted by the Discipline Scholar involved meetings and workshops in Perth, Melbourne, Sydney, Canberra and Brisbane. Stakeholders from all jurisdictions and most universities participated in the early phases of consultation through a series of workshops that concluded late in October 2010. The Draft Architecture Standards Statement was formed from these early meetings and consultation in respect of that document continued through early 2011. This publication represents the outcomes of work to establish an agreed standards statement for the Master of Architecture. Significant further work remains to ensure the alignment of professional accreditation and recognition procedures with emerging regulatory frameworks cascading from the establishment of the Tertiary Education Quality and Standards Agency (TEQSA). The Australian architecture community hopes that mechanisms can be found to integrate TEQSA’s quality assurance purpose with well-established and understood systems of professional accreditation to ensure the good standing of Australian architectural education into the future. The work to build renewed and integrated quality assurance processes and to foster the interests of this project will continue, for at least the next eighteen months, under the auspices of Australian Learning and Teaching Council (ALTC)-funded Architecture Discipline Network (ADN), led by ADBED and Queensland University of Technology. The Discipline Scholar gratefully acknowledges the generous contributions given by those in stakeholder communities to the formulation of the Statement. Professional and academic colleagues have travelled and gathered to shape the Standards Statement. Debate has been vigorous and spirited and the Statement is rich with the purpose, critical thinking and good judgement of the Australian architectural education community. The commitments made to the processes that have produced this Statement reflect a deep and abiding interest by the constituency in architectural education. This commitment bodes well for the vibrancy and productivity of the emergent Architecture Discipline Network (ADN). Endorsement, in writing, was received from the Australian Institute of Architects National Education Committee (AIA NEC): The National Education Committee (NEC) of the Australian Institute of Architects thank you for your work thus far in developing the Learning and Teaching Academic Standards for Architecture In particular, we acknowledge your close consultation with the NEC on the project along with a comprehensive cross-section of the professional and academic communities in architecture. The TLOs with the nuanced levels of capacities – to identify, develop, explain, demonstrate etc – are described at an appropriate level to be understood as minimum expectations for a Master of Architecture graduate. The Architects Accreditation Council of Australia (AACA) has noted: There is a clear correlation between the current processes for accreditation and what may be the procedures in the future following the current review. The requirement of the outcomes as outlined in the draft paper to demonstrate capability is an appropriate way of expressing the measure of whether the learning outcomes have been achieved. The measure of capability as described in the outcome statements is enhanced with explanatory descriptions in the accompanying notes.
Resumo:
Modern applications comprise multiple components, such as browser plug-ins, often of unknown provenance and quality. Statistics show that failure of such components accounts for a high percentage of software faults. Enabling isolation of such fine-grained components is therefore necessary to increase the robustness and resilience of security-critical and safety-critical computer systems. In this paper, we evaluate whether such fine-grained components can be sandboxed through the use of the hardware virtualization support available in modern Intel and AMD processors. We compare the performance and functionality of such an approach to two previous software based approaches. The results demonstrate that hardware isolation minimizes the difficulties encountered with software based approaches, while also reducing the size of the trusted computing base, thus increasing confidence in the solution's correctness. We also show that our relatively simple implementation has equivalent run-time performance, with overheads of less than 34%, does not require custom tool chains and provides enhanced functionality over software-only approaches, confirming that hardware virtualization technology is a viable mechanism for fine-grained component isolation.
Resumo:
In a letter to a close friend dated April 1922 Le Corbusier announced that he was to publish his first major book, Architecture et révolution, which would collect “a set ofarticles from L’EN.”1—L’Esprit nouveau, the revue jointly edited by him and painter Amédée Ozenfant, which ran from 1920 to 1925.2 A year later, Le Corbusier sketched a book cover design featuring “LE CORBUSIER - SAUGNIER,” the pseudonymic compound of Pierre Jeanneret and Ozenfant, above a square-framed single-point perspective of a square tunnel vanishing toward the horizon. Occupying the lower half of the frame was the book’s provisional title in large handwritten capital letters, ARCHITECTURE OU RÉVOLUTION, each word on a separate line, the “ou” a laconic inflection of Paul Laffitte’s proposed title, effected by Le Corbusier.3 Laffitte was one of two publishers Le Corbusier was courting between 1921 and 1922.4 An advertisement for the book, with the title finally settled upon, Vers une architecture, 5 was solicited for L’Esprit nouveau number 18. This was the original title conceived with Ozenfant, and had in fact already appeared in two earlier announcements.6 “Architecture ou révolution” was retained as the name of the book’s crucial and final chapter—the culmination of six chapters extracted from essays in L’Esprit nouveau. This chapter contained the most quoted passage in Vers une architecture, used by numerous scholars to adduce Le Corbusier’s political sentiment in 1923 to the extent of becoming axiomatic of his early political thought.7 Interestingly, it is the only chapter that was not published in L’Esprit nouveau, owing to a hiatus in the journal’s production from June 1922 to November 1923.8 An agitprop pamphlet was produced in 1922, after L’Esprit nouveau 11-12, advertising an imminent issue “Architecture ou révolution” with the famous warning: “the housing crisis will lead to the revolution. Worry about housing.”9
Resumo:
RESEARCH BACKGROUND Enacted Cartography documents 10 years of creative research practice by Ian Weir Research Architect and was developed as standalone exhibition to support Dr Weir’s selection by the Australian Institute of Architects to represent innovative architectural practice via the Institute’s review entitled Formations: New Practices in Australian Architecture – which took the form of an exhibition and book presented in Venice, Italy for 13th International Architecture Exhibition (Venice Architecture Biennale). All works exhibited in Enacted Cartography are original works by Dr Weir and are generated either from or for the remote biodiverse landscapes of the Fitzgerald Bioregion on the south coast of Western Australia. RESEARCH CONTRIBUTION As a creative work in its own right, the Enacted Cartography exhibition makes the following contributions to knowledge: 1. Expands understandings of architectural practice by presenting a geographically-specific but multimodal form of architectural practice - wherein practitioners cross over discipline boundaries into art practice, landscape representation, website design, undergraduate university teaching and community advocacy. 2. Contributes to understandings of how such a diverse multimodal form of practice might be represented through both digital media and traditional print media in an exhibition format. 3. Expands understandings of how architectural practitioners might work within a particular place to develop a geographically-specific sense of identity, a ‘landscape of resistance’. RESEARCH SIGNIFICANCE Enacted Cartography was presented to an international audience during the 13th International Architecture Exhibition (Venice Architecture Biennale). The significance of Dr Weir’s research is evidence by his selected by the Australian Institute of Architects to represent innovation in architectural practice for the Biennale. Enacted Cartography addresses problems of national and international importance including: 1. The sustainable development of biodiverse remote landscapes; 2. The reconciliation of bushfire safety and biodiversity conservation; 3. The necessity for rethinking of architectural design methodologies to meet the complexity of landscape management and design; 4. It challenges orthodox forms of landscape representation (aerial photography, for example) which are demonstrably inadequate registrations of biophysical and cultural landscapes.
Resumo:
Threats against computer networks evolve very fast and require more and more complex measures. We argue that teams respectively groups with a common purpose for intrusion detection and prevention improve the measures against rapid propagating attacks similar to the concept of teams solving complex tasks known from field of work sociology. Collaboration in this sense is not easy task especially for heterarchical environments. We propose CIMD (collaborative intrusion and malware detection) as a security overlay framework to enable cooperative intrusion detection approaches. Objectives and associated interests are used to create detection groups for exchange of security-related data. In this work, we contribute a tree-oriented data model for device representation in the scope of security. We introduce an algorithm for the formation of detection groups, show realization strategies for the system and conduct vulnerability analysis. We evaluate the benefit of CIMD by simulation and probabilistic analysis.