532 resultados para Nanocompósitos. Nanografita. Epóxi. Grafiteexpandido. Microondas
Resumo:
Solid-phase organic synthesis (SPOS) has been considered the main strategy for the construction of combinatorial libraries, because its simplicity leads to faster synthetic procedures. In addition to that, a series of reports in the specialized literature show great advantages in the use of microwave activation, when compared to classical heating, for instance: shorter reaction times, in some cases from several hours to a few minutes, increase of selectivity and product yields, energy economy and reduction and/or elimination of solvent. This review describes the use of microwave ovens/reactors in solid phase organic synthesis, describing the advantages, equipment and reactions using both techniques.
Resumo:
In this work a closed-vessel microwave-assisted acid decomposition procedure for clays was developed. Aluminum, Ca, Fe, K, Mg, Na, Si, and Ti were determined in clay digestates by inductively coupled plasma optical emission spectrometry. The most critical parameter for total decomposition of clays was the composition of the reagent mixture. The applied power and the heating time exerted a less critical influence. Best decomposition conditions were attained using a reagent mixture containing 4 mL aqua regia plus 3 mL HF and the heating program was implemented in 12 min. The accuracy of the results was demonstrated using two standard reference materials and a paired t-test showed a good agreement between determined and certified values at a 95% confidence level.
Resumo:
The construction and analytical evaluation of a coated graphite-epoxy electrode sensitive to the zinc-1,10-phenantroline complex based on the [Zn(fen)3][tetrakis(4-chlorophenyl)borate]2 incorporated into a poly(vinylchloride) (PVC) matrix are described. A thin membrane film of this ion-pair, dibutylphthalate (DBPh) and PVC were deposited directly onto an electrically conductive graphite-epoxy support located inside a Perspex® tube. The best PVC polymeric membrane contains 65% (m/m) DBPh, 30% (m/m) PVC and 5% (m/m) of the ion-pair. This electrode shows a response of 19.5 mV dec-1 over the zinc(II) concentration range of 1.0 x 10-5 to 1.0 x 10-3 mol L-1 in 1,10-phenantroline medium, at pH 6.0. The response time was less than 20 seconds and the lifetime of this electrode was more than four months (over 1200 determinations by each polymeric membrane). It was successfully used as an indicator electrode in the potentiometric precipitation titration of zinc(II) ions.
Resumo:
We have produced nanocomposite films of Ni:SiO2 by an alternative polymeric precursor route. Films, with thickness of ~ 1000 nm, were characterized by several techniques including X-ray diffraction, scanning electron microscopy, atomic force microscopy, flame absorption atomic spectrometry, and dc magnetization. Results from the microstructural characterizations indicated that metallic Ni-nanoparticles with average diameter of ~ 3 nm are homogeneously distributed in an amorphous SiO2 matrix. Magnetization measurements revealed a blocking temperature T B ~ 7 K for the most diluted sample and the absence of an exchange bias suggesting that Ni nanoparticles are free from an oxide layer.
Resumo:
The use of factorial design was evaluated for optimization of focused-microwave-assisted digestion of bean samples. Calcium, Fe, Mg, Mn and Zn percentual recoveries were determined in digestates after focused-microwave-assisted digestion according to factorial design procedures. A cavity microwave digestion was carried out to certify the elemental compositions obtained. The accuracy was checked using a standard reference material, the NIST SRM 8433 - Corn Bran. Results are in agreement with certified values at the 95% confidence limit when the Student t-test was used. Volumes of nitric and sulfuric acid, temperature, and the interplay between HNO3 and H2SO4 initial volumes were significant variables according to P-values in the analysis of variance (ANOVA).
Resumo:
The microwave oven became an important source of heating for many laboratory procedures including accelerating organic reactions. Reactions that require long reflux times can sometimes be carried out in a few hours or minutes in a conventional microwave oven. However, longer reflux times can be troublesome since domestic microwave ovens are not prepared for these harsh conditions. This technical note presents our finding on heterogeneous catalysis transesterification reactions between b-keto-esters and carbohydrate derivatives under heating or microwave irradiation using an adapted domestic microwave oven.
Resumo:
The applicability of the recently proposed procedure based on gradual sample addition to microwave-assisted pre-heated concentrated acid is limited by the sample viscosity. In this work, lubricating oil samples with high viscosity were encapsulated and manually added to the microwave-assisted pre-heated concentrated digestion mixture. The procedure was applied for determination of Al, Ca, Cr, Cu, Fe, Mg, Ni, P, Pb, Si, Sn, Sr, V, W, and Zn in lubricating oil by inductively coupled plasma optical emission spectrometry (ICP OES). Determined and certified values for Ca, Mg, P, and Zn in lubricating oil were in agreement at a 95% confidence level.
Resumo:
In this work we take advantage of the polyelectrolyte character of some Brazilian native gums to fabricate electrically conductive, nanostructured films. The gums Sterculia urens, (caraia), Sterculia striata (chicha) or Anadenanthera macrocarpa Benth were assembled in conjunction with poly(o-methoxyaniline) (POMA) in the form of layered nanostructured films using the layer-by-layer (LbL) technique. All the LbL films displayed a well-defined electroactivity, as confirmed via cyclic voltammetry. In comparison to POMA LbL films fabricated with conventional polyelectrolytes (viz. poly(vinyl sulfonic acid)-PVS), the presence of the gums in the LbL films increased remarkably the electrochemical stability of the films.
Resumo:
The effect of microwave (MW) irradiation on the crystalline structure of two natural clays and one commercial clay, Montmorillonite K10, was analyzed comparing the X-ray diffraction, N2 isotherms, NMR-MAS of 27Al and 29Si spectra of the clays before and after MW irradiation. The preparation of dioxolane ketals of isatin was used to analyze the MW effect on the catalyst activation. The yields achieved using catalysts activated by MW irradiation were lower (2 to 5%) than the yields achieved using catalysts activated by heat in a conventional oven.
Resumo:
Pb/Ti, Sn and Mg-based nanocomposite materials were prepared by the high-energy mechanical milling of commercial powders. The surface of these ceramic compounds was strongly influenced by the doping, diameter of the milling spheres and time of the mechanical milling (amorphization process). Such milling leads to the formation of nanocrystalline materials. The mechanical processing parameters of these compounds were investigated through Brunauer, Emmett and Teller isotherms, wide angle X-ray diffraction, transmission electron microscopy and CO2 adsorption.
Resumo:
Microwave irradiation offers a clean, inexpensive, and convenient method of heating, which is an alternative way of introducing energy into chemical systems. In particular, applications of microwave irradiation technology for petroleum processing have been developed in the last twenty years. The main objective of this paper is to review the use of microwave irradiation technology as an alternative technique applied during petroleum refining and primary processing of petroleum fluids, presenting and discussing successful applications of this technology as a tool for petroleum emulsion separation and catalytic reactions normally found at hydrorefining plants.
Resumo:
The natural rubber is a strategic material which can not be replaced by synthetic rubber in many technological applications. Brazil is a rubber importer, but new techniques of cultivation, breeding and diversification of producing species can reverse this situation. One of the best ways to add value to this commodity is nanotechnology. The production of nanocomposites is already a reality and shows that the sustainable use of this natural resource can lead to new products and boost the national agribusiness setting labor-qualified in the field.
Resumo:
Titanium dioxide is an efficient photocatalist, being possible to improve its efficiency with better charge separation which occurs when it is coupled with other semiconductors. Nanometric particles of ZnO were used to impregnate TiO2 P25 in order to optimize its photocatalytic properties. ZnO/TiO2 composites were obtained at different proportions and were characterized by X-ray diffraction (XRD), micro-Raman and diffuse reflectance spectroscopies, measurement of surface area (BET) and scanning electron microscopy (SEM). Raman spectroscopy data revealed a change on the TiO2 surface due the presence of ZnO which was observed by an enlargement of TiO2 peaks and a change on the relation rate between anatase and rutile phases of the composites. The photodegradation of azo-dye Drimaren red revealed better efficiency for ZnO/TiO2 3% nanocomposite and for ZnO pure.
Resumo:
Polyurethane/multi-walled carbon nanotube (MWCNT) nanocomposites have been prepared with nanotube concentrations between 0.01 wt% and 1 wt%. MWCNT as-synthesized samples with ~74 nm diameter and ~7 μm length were introduced by solution processing in the polyurethane matrix. Scanning electron microscopy (SEM) images demonstrated good dispersion and adhesion of the CNTs to the polymeric matrix. The C=O stretching band showed evidence of perturbation of the hydrogen interaction between urethanic moieties in the nanocomposites as compared to pure TPU. Differential scanning calorimetry and positron anihilation lifetime spectroscopy measurements allowed the detection of glass transition displacement with carbon nanotube addition. Furthermore, the electrical conductivity of the nanocomposites was significantly increased with the addition of CNT.
Resumo:
A fluid conducting composite material prepared from graphite powder, commercial epoxy resin Araldite®, and cyclohexanone has been developed. The composition was optimized considering the mechanical properties as conductivity and adhesiveness using response surface methodology. This work employed cyclic voltammetry and amperometry to investigate the characteristics of such composite electrodes without and with the insertion of Prussian blue in the electrode body (bulk modified electrode). The composite electrodes were also successfully used for the amperometric detection of hydrogen peroxide at 0.0V vs Ag/AgCl.