49 resultados para NKT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A growing body of evidence demonstrates a correlation between Th2 cytokines and the development of focal and segmental glomerulosclerosis ( FSGS). Therefore, we hypothesized that GSL-1, a monoglycosylceramide from Sphingomonas ssp. with pro-Th1 activity on invariant Natural Killer T ( iNKT) lymphocytes, could counterbalance the Th2 profile and modulate glomerulosclerosis. Using an adriamycin( ADM)-based model of FSGS, we found that BALB/c mice presented albuminuria and glomerular degeneration in association with a Th2-like pro-fibrogenic profile; these mice also expressed a combination of inflammatory cytokines, such as IL-4, IL-1 alpha, IL-1 beta, IL-17, TNF-alpha, and chemokines, such as RANTES and eotaxin. In addition, we observed a decrease in the mRNA levels of GD3 synthase, the enzyme responsible for GD3 metabolism, a glycolipid associated with podocyte physiology. GSL-1 treatment inhibited ADM-induced renal dysfunction and preserved kidney architecture, a phenomenon associated with the induction of a Th1-like response, increased levels of GD3 synthase transcripts and inhibition of pro-fibrotic transcripts and inflammatory cytokines. TGF-beta analysis revealed increased levels of circulating protein and tissue transcripts in both ADM- and GSL-1-treated mice, suggesting that TGF-beta could be associated with both FSGS pathology and iNKT-mediated immunosuppression; therefore, we analyzed the kidney expression of phosphorylated SMAD2/3 and SMAD7 proteins, molecules associated with the deleterious and protective effects of TGF-beta, respectively. We found high levels of phosphoSMAD2/3 in ADM mice in contrast to the GSL-1 treated group in which SMAD7 expression increased. These data suggest that GSL-1 treatment modulates the downstream signaling of TGF-beta through a renoprotective pathway. Finally, GSL-1 treatment at day 4, a period when proteinuria was already established, was still able to improve renal function, preserve renal structure and inhibit fibrogenic transcripts. In conclusion, our work demonstrates that the iNKT agonist GSL-1 modulates the pathogenesis of ADM-induced glomerulosclerosis and may provide an alternative approach to disease management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural killer T (NKT) cells are a heterogeneous population of lymphocytes that recognize antigens presented by CD1d and have attracted attention because of their potential role linking innate and adaptive immune responses. Peripheral NKT cells display a memory-activated phenotype and can rapidly secrete large amounts of pro-inflammatory cytokines upon antigenic activation. In this study, we evaluated NKT cells in the context of patients co-infected with HIV-1 and Mycobacterium leprae. The volunteers were enrolled into four groups: 22 healthy controls, 23 HIV-1-infected patients, 20 patients with leprosy and 17 patients with leprosy and HIV-1-infection. Flow cytometry and ELISPOT assays were performed on peripheral blood mononuclear cells. We demonstrated that patients co-infected with HIV-1 and M.leprae have significantly lower NKT cell frequencies [median 0.022%, interquartile range (IQR): 0.0070.051] in the peripheral blood when compared with healthy subjects (median 0.077%, IQR: 0.0320.405, P < 0.01) or HIV-1 mono-infected patients (median 0.072%, IQR: 0.0300.160, P < 0.05). Also, more NKT cells from co-infected patients secreted interferon-? after stimulation with DimerX, when compared with leprosy mono-infected patients (P = 0.05). These results suggest that NKT cells are decreased in frequency in HIV-1 and M.leprae co-infected patients compared with HIV-1 mono-infected patients alone, but are at a more activated state. Innate immunity in human subjects is strongly influenced by their spectrum of chronic infections, and in HIV-1-infected subjects, a concurrent mycobacterial infection probably hyper-activates and lowers circulating NKT cell numbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural killer (NK) cells play crucial roles in innate immunity and express CD39 (Ecto-nucleoside triphosphate diphosphohydrolase 1 [E-NTPD1]), a rate-limiting ectonucleotidase in the phosphohydrolysis of extracellular nucleotides to adenosine. We have studied the effects of CD39 gene deletion on NK cells in dictating outcomes after partial hepatic ischemia/reperfusion injury (IRI). We show in mice that gene deletion of CD39 is associated with marked decreases in phosphohydrolysis of adenosine triphosphate (ATP) and adenosine diphosphate to adenosine monophosphate on NK cells, thereby modulating the type-2 purinergic (P2) receptors demonstrated on these cells. We note that CD39-null mice are protected from acute vascular injury after single-lobe warm IRI, and, relative to control wild-type mice, display significantly less elevation of aminotransferases with less pronounced histopathological changes associated with IRI. Selective adoptive transfers of immune cells into Rag2/common gamma null mice (deficient in T cells, B cells, and NK/NKT cells) suggest that it is CD39 deletion on NK cells that provides end-organ protection, which is comparable to that seen in the absence of interferon gamma. Indeed, NK effector mechanisms such as interferon gamma secretion are inhibited by P2 receptor activation in vitro. Specifically, ATPgammaS (a nonhydrolyzable ATP analog) inhibits secretion of interferon gamma by NK cells in response to interleukin-12 and interleukin-18, providing a mechanistic link between CD39 deletion and altered cytokine secretion. CONCLUSION: We propose that CD39 deficiency and changes in P2 receptor activation abrogate secretion of interferon gamma by NK cells in response to inflammatory mediators, thereby limiting tissue damage mediated by these innate immune cells during IRI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human invariant natural killer T (NKT) cell TCRs bind to CD1d via an "invariant" Vα24-Jα18 chain (iNKTα) paired to semi-invariant Vβ11 chains (iNKTβ). Single-amino acid variations at position 93 (p93) of iNKTα, immediately upstream of the "invariant" CDR3α region, have been reported in a substantial proportion of human iNKT-cell clones (4-30%). Although p93, a serine in most human iNKT-cell TCRs, makes no contact with CD1d, it could affect CD1d binding by altering the conformation of the crucial CDR3α loop. By generating recombinant refolded iNKT-cell TCRs, we show that natural single-nucleotide variations in iNKTα, translating to serine, threonine, asparagine or isoleucine at p93, exert a powerful effect on CD1d binding, with up to 28-fold differences in affinity between these variants. This effect was observed with CD1d loaded with either the artificial α-galactosylceramide antigens KRN7000 or OCH, or the endogenous glycolipid β-galactosylceramide, and its importance for autoreactive recognition of endogenous lipids was demonstrated by the binding of variant iNKT-cell TCR tetramers to cell surface expressed CD1d. The serine-containing variant showed the strongest CD1d binding, offering an explanation for its predominance in vivo. Complementary molecular dynamics modeling studies were consistent with an impact of p93 on the conformation of the CDR3α loop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invariant human TCR Valpha24-Jalpha18+/Vbeta11+ NKT cells (iNKT) are restricted by CD1d-alpha-glycosylceramides. We analyzed crystal structures and binding characteristics for an iNKT TCR plus two CD1d-alpha-GalCer-specific Vbeta11+ TCRs that use different TCR Valpha chains. The results were similar to those previously reported for MHC-peptide-specific TCRs, illustrating the versatility of the TCR platform. Docking TCR and CD1d-alpha-GalCer structures provided plausible insights into their interaction. The model supports a diagonal orientation of TCR on CD1d and suggests that complementarity determining region (CDR)3alpha, CDR3beta, and CDR1beta interact with ligands presented by CD1d, whereas CDR2beta binds to the CD1d alpha1 helix. This docking provides an explanation for the dominant usage of Vbeta11 and Vbeta8.2 chains by human and mouse iNKT cells, respectively, for recognition of CD1d-alpha-GalCer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome in which the known susceptibility genes (DKC1, TERC, and TERT) belong to the telomere maintenance pathway; patients with DC have very short telomeres. We used multicolor flow fluorescence in situ hybridization analysis of median telomere length in total blood leukocytes, granulocytes, lymphocytes, and several lymphocyte subsets to confirm the diagnosis of DC, distinguish patients with DC from unaffected family members, identify clinically silent DC carriers, and discriminate between patients with DC and those with other bone marrow failure disorders. We defined "very short" telomeres as below the first percentile measured among 400 healthy control subjects over the entire age range. Diagnostic sensitivity and specificity of very short telomeres for DC were more than 90% for total lymphocytes, CD45RA+/CD20- naive T cells, and CD20+ B cells. Granulocyte and total leukocyte assays were not specific; CD45RA- memory T cells and CD57+ NK/NKT were not sensitive. We observed very short telomeres in a clinically normal family member who subsequently developed DC. We propose adding leukocyte subset flow fluorescence in situ hybridization telomere length measurement to the evaluation of patients and families suspected to have DC, because the correct diagnosis will substantially affect patient management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concanavalin A (Con A)-induced injury is an established natural killer T (NKT) cell-mediated model of inflammation that has been used in studies of immune liver disease. Extracellular nucleotides, such as adenosine triphosphate, are released by Con A-stimulated cells and bind to specific purinergic type 2 receptors to modulate immune activation responses. Levels of extracellular nucleotides are in turn closely regulated by ectonucleotidases, such as CD39/NTPDase1. Effects of extracellular nucleotides and CD39 on NKT cell activation and upon hepatic inflammation have been largely unexplored to date. Here, we show that NKT cells express both CD39 and CD73/ecto-5'-nucleotidase and can therefore generate adenosine from extracellular nucleotides, whereas natural killer cells do not express CD73. In vivo, mice null for CD39 are protected from Con A-induced liver injury and show substantively lower serum levels of interleukin-4 and interferon-gamma when compared with matched wild-type mice. Numbers of hepatic NKT cells are significantly decreased in CD39 null mice after Con A administration. Hepatic NKT cells express most P2X and P2Y receptors; exceptions include P2X3 and P2Y11. Heightened levels of apoptosis of CD39 null NKT cells in vivo and in vitro appear to be driven by unimpeded activation of the P2X7 receptor. CONCLUSION: CD39 and CD73 are novel phenotypic markers of NKT cells. Deletion of CD39 modulates nucleotide-mediated cytokine production by, and limits apoptosis of, hepatic NKT cells providing protection against Con A-induced hepatitis. This study illustrates a further role for purinergic signaling in NKT-mediated mechanisms that result in liver immune injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An increasing number of lipid mediators have been identified as key modulators of immunity. Among these is a family of glycolipids capable of cellular uptake, loading onto the MHC-like molecule CD1d and stimulation of NKT cells. NKT cells are particularly interesting because they bridge innate and adaptive immunity by coordinating the early events of dendritic cell maturation, recruitment of NK cells, CD4 and CD8 T cells, and B cells at the site of microbial injury. As such, their therapeutic manipulation could be of the greatest interest in vaccine design or active immunotherapy. However, the use of NKT cells as cellular adjuvant of immunity in the clinic will require a better knowledge of the pharmacology of lipid agonists in order to optimize their action and avoid potential unseen off-target effects. We have been studying extracellular transport and cellular uptake of NKT agonists for the past few years. This field is confronted to a very limited prior knowledge and a small set of usable tools. New technology must be put in place and adapted to answering basic immunology questions related to NKT cells. The intimate link between the pharmacology of glycolipids and lipid metabolism makes us believe that great variations of bioactivity could be seen in the general population when NKT agonists are used therapeutically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adjuvants are essential components of vaccine formulations that enhance adaptive immune responses to antigens, particularly for immunizations targeting the tolerogenic mucosal tissues, which are more biologically relevant for protective immunity against pathogens transmitted by the mucosal routes. Adjuvants possess the inherent capacity to bridge innate and adaptive immune responses through activating innate immune mediators. Here evidence is presented in support of the effectiveness of a synthetic glycolipid, alpha-Galactosylceramide (-GalCer), as an adjuvant for mucosal immunization with peptide and protein antigens, by oral and intranasal routes, to prime antigen-specific immune responses in multiple systemic and mucosal compartments. The adjuvant activity of -GalCer delivered by the intranasal route was manifested in terms of potent activation of NKT cells, an important innate immunity mediator, along with the activation of dendritic cells (DC) which serve as the professional antigen-presenting cells. Data from this investigation provide the first evidence for mucosal delivery as an effective means to harness the adjuvant potential of α-GalCer for priming as well as boosting cellular immune responses to co-administered immunogens. Unlike systemic administration where a single dose of α-GalCer leads to anergy of responding NKT cells and thus hinders delivery of booster immunizations, we demonstrated that administration of multiple doses of α-GalCer by the intranasal route affords repeated activation of NKT cells and the induction of broad systemic and mucosal immunity. This is specifically advantageous, and may be even essential, for vaccination regimens against mucosal pathogens such as the human immunodeficiency virus (HIV) and the human papillomavirus (HPV), where priming of durable protective immunity at the mucosal portals of pathogen entry would be highly desirable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potent vaccine formulations ideally include adjuvants to activate innate immune responses and enhance antigen-specific adaptive immunity. The synthetic glycolipid alpha-Galactosylceramide (α-GalCer) effectively activates the innate immune mediating NKT cells to produce cytokines and activate downstream immune cells, resulting in development of humoral and cell mediated immune responses to co-administered antigens. While a single intravenous immunization of α-GalCer strongly activates NKT cells, multiple doses by this route are well documented to induce anergy in NKT cells. Anergy is defined as the deficiency in NKT proliferation and cytokine production, including IL-4 and IFNγ. However, our studies have shown that two doses of α-GalCer administered intranasally by the intranasal route leads to reactivation of NKT cells and improved adaptive immune responses after each subsequent dose. I therefore investigated the role of multiple routes of immunization in activation of NKT cells, i.e. anergy versus repeated activation. Specifically, I hypothesized that the differential capacity of NKT cells to produce IFNγ, as a result of route of immunization with α-GalCer, influences the induction of adaptive immune responses to co-administered antigen. Our experimental design utilizes the observation that intranasal immunization primarily induces immune responses in the lungs while intravenous immunization induces responses in the liver. Using intracellular cytokine staining for IFNγ production and Elispot analyses for determining NKT and T cell activation, respectively, it was determined that administering two consecutive intravenous doses resulted in anergy to NKT cells (no IFNγ production) in the liver and lack of adaptive immunity while second immunization by the intranasal route overcame anergy in the lung. The outcome in the other tissues analyzed was mixed and could be the result of tissue microenvironment among others possible reasons. When intranasal dosing preceded systemic, NKT cells were reactivated to produce IFNγ and induced positive adaptive immune responses in the responding lung tissue. These results indicate that the mechanism by which mucosal and systemic immunization routes activate NKT cells may differ in that there is a differential tissue-specific effect induced by each route. Future studies are necessary to determine the reason for these tissue-specific effects and how they relate to NKT cell activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural killer T (NKT) cells constitute a distinct subpopulation of T cells with a unique antigen specificity, prompt effector functions, and an unusual tissue distribution. NKT cells are especially abundant in the liver, but their physiological function in this organ remains unclear. In the present study, we examined the possible contribution of NKT cells to a murine model of hepatitis induced by i.v. injection of Con A. CD1-deficient mice lacking NKT cells were highly resistant to Con A-induced hepatitis. Adoptive transfer of hepatic NKT cells isolated from wild-type mice, but not from FasL-deficient gld mice, sensitized CD1-deficient mice to Con A-induced hepatitis. Furthermore, adoptive transfer of hepatic mononuclear cells from wild-type mice, but not from CD1-deficient mice, sensitized gld mice to Con A-induced hepatitis. Upon Con A administration, hepatic NKT cells rapidly up-regulated cell surface FasL expression and FasL-mediated cytotoxicity. At the same time, NKT cells underwent apoptosis leading to their rapid disappearance in the liver. These results implicated FasL expression on liver NKT cells in the pathogenesis of Con A-induced hepatitis, suggesting a similar pathogenic role in human liver diseases such as autoimmune hepatitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural killer T (NKT) cells are a unique population of lymphocytes that coexpress a semiinvariant T cell and natural killer cell receptors, which are particularly abundant in the liver. To investigate the possible effect of these cells on the development of the liver stages of malaria parasites, a glycolipid, α-galactosylceramide (α-GalCer), known to selectively activate Vα14 NKT cells in the context of CD1d molecules, was administered to sporozoite-inoculated mice. The administration of α-GalCer resulted in rapid, strong antimalaria activity, inhibiting the development of the intrahepatocytic stages of the rodent malaria parasites Plasmodium yoelii and Plasmodium berghei. The antimalaria activity mediated by α-GalCer is stage-specific, since the course of blood-stage-induced infection was not inhibited by administration of this glycolipid. Furthermore, it was determined that IFN-γ is essential for the antimalaria activity mediated by the glycolipid. Taken together, our results provide the clear evidence that NKT cells can mediate protection against an intracellular microbial infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY The Porcine Reproductive and Respiratory Syndrome (PRRS) virus is one of the most spread pathogens in swine herds all over the world and responsible for a reproductive and respiratory syndrome that causes severe heath and economical problems. This virus emerged in late 1980’s but although about 30 years have passed by, the knowledge about some essential facets related to the features of the virus (pathogenesis, immune response, and epidemiology) seems to be still incomplete. Taking into account that the development of modern vaccines is based on how innate and acquire immunity react, a more and more thorough knowledge on the immune system is needed, in terms of molecular modulation/regulation of the inflammatory and immune response upon PRRSV infection. The present doctoral thesis, which is divided into 3 different studies, is aimed to increase the knowledge about the interaction between the immune system and the PRRS virus upon natural infection. The objective of the first study entitled “Coordinated immune response of memory and cytotoxic T cells together with IFN-γ secreting cells after porcine reproductive and respiratory syndrome virus (PRRSV) natural infection in conventional pigs” was to evaluate the activation and modulation of the immune response in pigs naturally infected by PRRSV compared to an uninfected control group. The course of viremia was evaluated by PCR, the antibody titres by ELISA, the number of IFN-γ secreting cells (IFN- SC) by an ELISPOT assay and the immunophenotyping of some lymphocyte subsets (cytotoxic cells, memory T lymphocytes and cytotoxic T lymphocytes) by flow cytometry. The results showed that the activation of the cell-mediated immune response against PRRSV is delayed upon infection and that however the levels of IFN-γ SC and lymphocyte subsets subsequently increase over time. Furthermore, it was observed that the course of the different immune cell subsets is time-associated with the levels of PRRSV-specific IFN-γ SC and this can be interpreted based on the functional role that such lymphocyte subsets could have in the specific production/secretion of the immunostimulatory cytokine IFN-γ. In addition, these data support the hypothesis that the age of the animals upon the onset of infection or the diverse immunobiological features of the field isolate, as typically hypothesized during PRRSV infection, are critical conditions able to influence the qualitative and quantitative course of the cell-mediated immune response during PRRSV natural infection. The second study entitled “Immune response to PCV2 vaccination in PRRSV viremic piglets” was aimed to evaluate whether PRRSV could interfere with the activation of the immune response to PCV2 vaccination in pigs. In this trial, 200 pigs were divided into 2 groups: PCV2-vaccinated (at 4 weeks of age) and PCV2-unvaccinated (control group). Some piglets of both groups got infected by PRRSV, as determined by PRRSV viremia detection, so that 4 groups were defined as follows: PCV2 vaccinated - PRRSV viremic PCV2 vaccinated - PRRSV non viremic PCV2 unvaccinated - PRRSV viremic PCV2 unvaccinated - PRRSV non viremic The following parameters were evaluated in the 4 groups: number of PCV2-specific IFN-γ secreting cells, antibody titres by ELISA and IPMA. Based on the immunological data analysis, it can be deduced that: 1) The low levels of antibodies against PCV2 in the PCV2-vaccinated – PRRSV-viremic group at vaccination (4 weeks of age) could be related to a reduced colostrum intake influenced by PRRSV viremia. 2) Independently of the viremia status, serological data of the PCV2-vaccinated group by ELISA and IPMA does not show statistically different differences. Consequently, it can be be stated that, under the conditions of the study, PRRSV does not interfere with the antibody response induced by the PCV2 vaccine. 3) The cell-mediated immune response in terms of number of PCV2-specific IFN-γ secreting cells in the PCV2-vaccinated – PRRSV-viremic group seems to be compromised, as demonstrated by the reduction of the number of IFN-γ secreting cells after PCV2 vaccination, compared to the PCV2-vaccinated – PRRSV-non-viremic group. The data highlight and further support the inhibitory role of PRRSV on the development and activation of the immune response and highlight how a natural infection at early age can negatively influence the immune response to other pathogens/antigens. The third study entitled “Phenotypic modulation of porcine CD14+ monocytes, natural killer/natural killer T cells and CD8αβ+ T cell subsets by an antibody-derived killer peptide (KP)” was aimed to determine whether and how the killer peptide (KP) could modulate the immune response in terms of activation of specific lymphocyte subsets. This is a preliminary approach also aimed to subsequently evaluate such KP with a potential antivural role or as adjuvant. In this work, pig peripheral blood mononuclear cells (PBMC) were stimulated with three KP concentrations (10, 20 and 40 g/ml) for three time points (24, 48 and 72 hours). TIME POINTS (hours) KP CONCENTRATIONS (g/ml) 24 0-10-20-40 48 0-10-20-40 72 0-10-20-40 By using flow cytometry, the qualitative and quantitative modulation of the following immune subsets was evaluated upon KP stimulation: monocytes, natural killer (NK) cells, natural killer T (NKT) cells, and CD4+ and CD8α/β+ T lymphocyte subsets. Based on the data, it can be deduced that: 1) KP promotes a dose-dependent activation of monocytes, particularly after 24 hours of stimulation, by inducing a monocyte phenotypic and maturation shift mainly involved in sustaining the innate/inflammatory response. 2) KP induces a strong dose-dependent modulation of NK and NKT cells, characterized by an intense increase of the NKT cell fraction compared to NK cells, both subsets involved in the antibody-dependent cell cytotoxicity (ADCC). The increase is observed especially after 24 hours of stimulation. 3) KP promotes a significant activation of the cytotoxic T lymphocyte subset (CTL). 4) KP can modulate both the T helper and T cytotoxic phenotype, by inducing T helper cells to acquire the CD8α thus becoming doube positive cells (CD4+CD8+) and by inducing CTL (CD4-CD8+high) to acquire the double positive phenotype (CD4+CD8α+high). Therefore, KP may induce several effects on different immune cell subsets. For this reason, further research is needed aimed at characterizing each “effect” of KP and thus identifying the best use of the decapeptide for vaccination practice, therapeutic purposes or as vaccine adjuvant. RIASSUNTO Il virus della PRRS (Porcine Reproductive Respiratory Syndrome) è uno dei più diffusi agenti patogeni negli allevamenti suini di tutto il mondo, responsabile di una sindrome riproduttiva e respiratoria causa di gravi danni ad impatto sanitario ed economico. Questo virus è emerso attorno alla fine degli anni ’80 ma nonostante siano passati circa una trentina di anni, le conoscenze su alcuni punti essenziali che riguardano le caratteristiche del virus (patogenesi, risposta immunitaria, epidemiologia) appaiono ancora spesso incomplete. Considerando che lo sviluppo dei vaccini moderni è basato sui principi dell’immunità innata e acquisita è essenziale una sempre più completa conoscenza del sistema immunitario inteso come modulazione/regolazione molecolare della risposta infiammatoria e immunitaria in corso di tale infezione. Questo lavoro di tesi, suddiviso in tre diversi studi, ha l’intento di contribuire all’aumento delle informazioni riguardo l’interazione del sistema immunitario, con il virus della PRRS in condizioni di infezione naturale. L’obbiettivo del primo studio, intitolato “Associazione di cellule memoria, cellule citotossiche e cellule secernenti IFN- nella risposta immunitaria in corso di infezione naturale da Virus della Sindrome Riproduttiva e Respiratoria del Suino (PRRSV)” è stato di valutare l’attivazione e la modulazione della risposta immunitaria in suini naturalmente infetti da PRRSV rispetto ad un gruppo controllo non infetto. I parametri valutati sono stati la viremia mediante PCR, il titolo anticorpale mediante ELISA, il numero di cellule secernenti IFN- (IFN- SC) mediante tecnica ELISPOT e la fenotipizzazione di alcune sottopopolazioni linfocitarie (Cellule citotossiche, linfociti T memoria e linfociti T citotossici) mediante citofluorimetria a flusso. Dai risultati ottenuti è stato possibile osservare che l’attivazione della risposta immunitaria cellulo-mediata verso PRRSV appare ritardata durante l’infezione e che l’andamento, in termini di IFN- SC e dei cambiamenti delle sottopopolazioni linfocitarie, mostra comunque degli incrementi seppur successivi nel tempo. E’ stato inoltre osservato che gli andamenti delle diverse sottopopolazioni immunitarie cellulari appaiono temporalmente associati ai livelli di IFN- SC PRRSV-specifiche e ciò potrebbe essere interpretato sulla base del ruolo funzionale che tali sottopopolazioni linfocitarie potrebbero avere nella produzione/secrezione specifica della citochina immunoattivatrice IFN-. Questi dati inoltre supportano l’ipotesi che l’età degli animali alla comparsa dell’infezione o, come tipicamente ipotizzato nell’infezione da PRRSV, le differenti caratteristiche immunobiologiche dell’isolato di campo, sia condizioni critiche nell’ influenzare l’andamento qualitativo e quantitativo della risposta cellulo-mediata durante l’infezione naturale da PRRSV. Il secondo studio, dal titolo “Valutazione della risposta immunitaria nei confronti di una vaccinazione contro PCV2 in suini riscontrati PRRSV viremici e non viremici alla vaccinazione” ha avuto lo scopo di valutare se il virus della PRRS potesse andare ad interferire sull’attivazione della risposta immunitaria indotta da vaccinazione contro PCV2 nel suino. In questo lavoro sono stati arruolati 200 animali divisi in due gruppi, PCV2 Vaccinato (a 4 settimane di età) e PCV2 Non Vaccinato (controllo negativo). Alcuni suinetti di entrambi i gruppi, si sono naturalmente infettati con PRRSV, come determinato con l’analisi della viremia da PRRSV, per cui è stato possibile creare quattro sottogruppi, rispettivamente: PCV2 vaccinato - PRRSV viremico PCV2 vaccinato - PRRSV non viremico PCV2 non vaccinato - PRRSV viremico PCV2 non vaccinato - PRRSV non viremico Su questi quattro sottogruppi sono stati valutati i seguenti parametri: numero di cellule secernenti IFN- PCV2 specifiche, ed i titoli anticorpali mediante tecniche ELISA ed IPMA. Dall’analisi dei dati immunologici derivati dalle suddette tecniche è stato possibile dedurre che:  I bassi valori anticorpali nei confronti di PCV2 del gruppo Vaccinato PCV2-PRRSV viremico già al periodo della vaccinazione (4 settimane di età) potrebbero essere messi in relazione ad una ridotta assunzione di colostro legata allo stato di viremia da PRRSV  Indipendentemente dallo stato viremico, i dati sierologici del gruppo vaccinato PCV2 provenienti sia da ELISA sia da IPMA non mostrano differenze statisticamente significative. Di conseguenza è possibile affermare che in questo caso PRRSV non interferisce con la risposta anticorpale promossa dal vaccino PCV2.  La risposta immunitaria cellulo-mediata, intesa come numero di cellule secernenti IFN- PCV2 specifiche nel gruppo PCV2 vaccinato PRRS viremico sembra essere compromessa, come viene infatti dimostrato dalla diminuzione del numero di cellule secernenti IFN- dopo la vaccinazione contro PCV2, comparata con il gruppo PCV2 vaccinato- non viremico. I dati evidenziano ed ulteriormente sostengono il ruolo inibitorio del virus della PRRSV sullo sviluppo ed attivazione della risposta immunitaria e come un infezione naturale ad età precoci possa influenzare negativamente la risposta immunitaria ad altri patogeni/antigeni. Il terzo studio, intitolato “Modulazione fenotipica di: monociti CD14+, cellule natural killer (NK), T natural killer (NKT) e sottopopolazioni linfocitarie T CD4+ e CD8+ durante stimolazione con killer peptide (KP) nella specie suina” ha avuto come scopo quello di stabilire se e come il Peptide Killer (KP) potesse modulare la risposta immunitaria in termini di attivazione di specifiche sottopopolazioni linfocitarie. Si tratta di un approccio preliminare anche ai fini di successivamente valutare tale KP in un potenziale ruolo antivirale o come adiuvante. In questo lavoro, periferal blood mononuclear cells (PBMC) suine sono state stimolate con KP a tre diverse concentrazioni (10, 20 e 40 g/ml) per tre diversi tempi (24, 48 e 72 ore). TEMPI DI STIMOLAZIONE (ore) CONCENTRAZIONE DI KP (g/ml) 24 0-10-20-40 48 0-10-20-40 72 0-10-20-40 Mediante la citometria a flusso è stato dunque possibile analizzare il comportamento qualitativo e quantitativo di alcune sottopopolazioni linfocitarie sotto lo stimolo del KP, tra cui: monociti, cellule Natural Killer (NK), cellule T Natural Killer (NKT) e linfociti T CD4 e CD8+. Dai dati ottenuti è stato possibile dedurre che: 1) KP promuove un’attivazione dei monociti dose-dipendente in particolare dopo 24 ore di stimolazione, inducendo uno “shift” fenotipico e di maturazione monocitaria maggiormente coinvolto nel sostegno della risposta innata/infiammatoria. 2) KP induce una forte modulazione dose-dipendente di cellule NK e NKT con un forte aumento della frazione delle cellule NKT rispetto alle NK, sottopopolazioni entrambe coinvolte nella citotossicità cellulare mediata da anticorpi (ADCC). L’aumento è riscontrabile soprattutto dopo 24 ore di stimolazione. 3) KP promuove una significativa attivazione della sottopopolazione del linfociti T citotossici (CTL). 4) Per quanto riguarda la marcatura CD4+/CD8+ è stato dimostrato che KP ha la capacità di modulare sia il fenotipo T helper che T citotossico, inducendo le cellule T helper ad acquisire CD8 diventando quindi doppio positive (CD4+CD8+) ed inducendo il fenotipo CTL (CD4-CD8+high) ad acquisire il fenotipo doppio positivo (CD4+CD8α+high). Molti dunque potrebbero essere gli effetti che il decapeptide KP potrebbe esercitare sulle diverse sottopopolazioni del sistema immunitario, per questo motivo va evidenziata la necessità di impostare e attuare nuove ricerche che portino alla caratterizzazione di ciascuna “abilità” di KP e che conducano successivamente alla scoperta del migliore utilizzo che si possa fare del decapeptide sia dal punto di vista vaccinale, terapeutico oppure sotto forma di adiuvante vaccinale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural killer T (NKT) cells play an important role in controlling cancers, infectious diseases and autoimmune diseases. Although the rhesus macaque is a useful primate model for many human diseases such as infectious and autoimmune diseases, little is known about their NKT cells. We analyzed Valpha24TCR+ T cells from rhesus macaque peripheral blood mononuclear cells stimulated with aalpha-galactosylceramide (a-GalCer) and interleukin-2. We found that rhesus macaques possess Va24TCR+ T cells, suggesting that recognition of alpha-GalCer is highly conserved between rhesus macaques and humans. The amino acid sequences of the V-J junction for the Valpha24TCR of rhesus macaque and human NKT cells are highly conserved (93% similarity), and the CD1d alpha1-alpha2 domains of both species are highly homologous (95.6%). These findings indicate that the rhesus macaque is a useful primate model for understanding the contribution of NKT cells to the control of human diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frequency and phenotype of human antiviral memory CD8(+) T cells in blood are well studied, yet little is known about their distribution within tissues. Analysis of antiviral CD8(+) T cell populations derived from a unique set of normal liver and blood samples identified a consistent population of virus-specific cells within the liver. In comparison to the circulating T cells, the liver-derived T cells were present at frequencies which were variably enriched compared to that in the blood, and showed significant differences with regard to the expression of CD45RA, CD45RO, CD95, CCR7, CD27 and CD28. The differences in these cell surface markers are consistent with a mature 'effector memory' phenotype of antigen-specific CD8(+) T cells within the liver. An enrichment of an activated subset of NKT cells (Valpha24/Vbeta11) was also observed, a finding which may be relevant to the regulation of the antiviral population:.