891 resultados para NEUROLOGICAL DISEASES
Resumo:
Innumerous protocols, using the mouse embryonic stem (ES) cells as model for in vitro study of neurons functional properties and features, have been developed. Most of these protocols are short lasting, which, therefore, does not allow a careful analysis of the neurons maturation, aging, and death processes. We describe here a novel and efficient long-lasting protocol for in vitro ES cells differentiation into neuronal cells. It consists of obtaining embryoid bodies, followed by induction of neuronal differentiation with retinoic acid of nonadherent embryoid bodies (three-dimensional model), which further allows their adherence and formation of adherent neurospheres (AN, bi-dimensional model). The AN can be maintained for at least 12 weeks in culture under repetitive mechanical splitting, providing a constant microenvironment (in vitro niche) for the neuronal progenitor cells avoiding mechanical dissociation of AN. The expression of neuron-specific proteins, such as nestin, sox1, beta III-tubulin, microtubule-associated protein 2, neurofilament medium protein, Tau, neuronal nuclei marker, gamma-aminobutyric acid, and 5-hydroxytryptamine, were confirmed in these cells maintained during 3 months under several splitting. Additionally, expression pattern of microtubule-associated proteins, such as lissencephaly (Lis1) and nuclear distribution element-like (Ndel1), which were shown to be essential for differentiation and migration of neurons during embryogenesis, was also studied. As expected, both proteins were expressed in undifferentiated ES cells, AN, and nonrosette neurons, although presenting different spatial distribution in AN. In contrast to previous studies, using cultured neuronal cells derived from embryonic and adult tissues, only Ndel1 expression was observed in the centrosome region of early neuroblasts from AN. Mature neurons, obtained from ES cells in this work, display ionic channels and oscillations of membrane electrical potential typical of electrically excitable cells, which is a characteristic feature of the functional central nervous system (CNS) neurons. Taken together, our study demonstrated that AN are a long-term culture of neuronal cells that can be used to analyze the process of neuronal differentiation dynamics. Thus, the protocol described here provides a new experimental model for studying neurological diseases associated with neuronal differentiation during early development, as well as it represents a novel source of functional cells that can be used as tools for testing the effects of toxins and/or drugs on neuronal cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Activation of the kynurenine (KYN) pathway (KP) by modulators of immune system has been observed during several neurological diseases. Here we assessed the association of chemo-/cytokine levels with the concentration of KP metabolites in cerebrospinal fluid (CSF) and plasma samples from patients with bacterial meningitis (BM). All samples were collected from 42 patients diagnosed with acute bacterial meningitis (ABM), aseptic meningitis, tuberculous meningitis and patients without infection neurological disorders. CSF and plasma concentration of metabolites from the KP was assessed by high pressure liquid chromatography (HPLC) and cytokines and chemokines by Bio-plex 200 suspension array system. Concentrations of the KP metabolites KYN and kynurenic acid (KYNA) were significantly higher in CSF of patients with ABM compared to other groups. Tryptophan (TRP), anthranilic acid (AA), 3-hydroxykynurenine (3HK) and 3-hydroxyanthranilic acid (3HAA) did not show statistical significance, although some of them presented a good accumulation during ABM. The expression of TNF-alpha, IL-6, IL-1beta, IFN-gamma, IL-10, IL-1 receptor antagonist (IL-1Ra), MIP-1alpha, MIP-1beta, MCP-1 and G-CSF was about 100-fold higher in CSF from ABM patients than other infected groups. In all CSF and plasma samples, the concentration of IL-2, IL-12(p70), IL-4, IL-8 and GM-CSF was not significant. ABM still showed significant concentrations of IL-6, IL-10, IL-1Ra and MCP-1 in plasma samples. Based on the comparison of KP metabolites concentrations between plasma and CSF samples we conclude that the activation of the tryptophan pathway upon BM occurs within the brain. This increase in KP metabolites is most due to activation of the KP by molecules as IFN-gamma and TNF-alpha in response to infection.
Resumo:
The cortical development requires a precise process of proliferation, migration, survival and differentiation of newly formed neurons to finally achieve the development of a functional network. Different kinases, such as PKA, CaMKII, MAPK and PI3K, phosphorylate the transcription factors CREB, and thus activate it, inducing CREB-dependent gene expression. In order to identify the involvement of such signaling pathways mediated by CREB over neuronal differentiation and survival, in vitro experiments of cell culture were conducted using pharmacological kinase inhibitors and genetic techniques to express different forms of CREB (A-CREB and CREB-FY) in cortical neurons. Inhibition of PKA and CaMKII decreased the length of neuronal processes (neurites); whereas inhibition of MAPK did not affect the length, but increased the number of neurites. Blockade of PI3K do not appear to alter neuronal morphology, nor the soma size changed with the kinase blockades. CREB activation (CREB-FY) along with MAPK and PI3K blockades presented a negative side effect over neuritic growth and the expression of A-CREB leaded to a significant decrease in neuronal survival after 60h in vitro and mimicked some of the effects on neuronal morphology observed with PKA and CaMKII blockade. In summary the signaling through CREB influences the morphology of cortical neurons, particularly when phosphorylated by PKA, and CREB signaling is also important for survival of immature neurons prior to the establishment of fully functional synaptic contacts. Our data contribute to understanding the role of CREB signaling, activated by different routes, on survival and neuronal differentiation and may be valuable in the development of regenerative strategies in different neurological diseases
Resumo:
Laryngeal Electromyography (LEMG) is an auxiliary diagnostic method used for the comprehension and diagnosis of different neurological diseases that compromise laryngeal function. The most common LEMG technique is the percutaneous insertion of needle electrodes guided by surface anatomical references. We describe techniques for inserting needle electrodes into the tireoaritenoideus (TA), cricotireoideus (CT), cricoaritenoideus lateralis (CAL) and cricoaritenoideus posterioris (CAP) muscles; these are used at UNICAMP laryngology ambulatory; we discuss difficulties found and their proposed solutions. All patients were submitted to otorhinolaryngological, phonoaudiological and laryngeal endoscopy before LEMG. The CAP approach, by digital rotation of the thyroid cartilage was found to be the most difficult, followed by the CAL approach. TA and CT approaches gave no major problems, except with some older and obese patients. A significant complication of the TA approach via thyroid cartilage was a hematoma in one patient which partially obstructed the laryngeal lumen.
Resumo:
Peanut is one of the few plants that synthesizes resveratrol, a phenolic compound of the stilbene class, which has been associated with reduced risk of developing chronic diseases, such as cancer, cardiovascular diseases, skin diseases, pulmonary diseases, diabetes and neurological diseases. Resveratrol was detected in different parts of the peanut plant, including roots, leaves, seeds and their derivatives. The wild species of the Arachis section are also strong candidates to synthesize resveratrol because they are phylogenetically closely related to cultivated peanut. Our objective was to characterize the resveratrol content in ten wild species of Arachis with three different genomes (A, B and K). The plant material was composed of leaves of the ten species treated (test) and not treated (control) with ultraviolet (UV) radiation. The test and control samples were extracted and the identification and quantification of resveratrol was performed using high performance liquid chromatography (HPLC). All species studied synthesized resveratrol and the concentrations ranged from 299.5 μg/g in A. kempff-mercadoi to 819.9 μg/g in A. cardenasii. DPPH antioxidant activity varied between 18.7 % for A. duranensis and 48.2 % in A. simpsonii. The results showed that wild Arachis species are a potential source of alleles for improvement of cultivated peanut, with the aim of achieving higher resveratrol content in leaves. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Pós-graduação em Doenças Tropicais - FMB
Resumo:
A Chromobacterium violaceum é uma beta-proteobactéria Gram-negativa comum da microbiota tropical e um patógeno oportunista para animais e humanos. A infecção causada pela C. violaceum apresenta alta taxa de mortalidade, mas os mecanismos da patogenicidade ainda não foram caracterizados. Como outros microorganismos ambientais, essa bactéria está exposta a condições externas muito variáveis, que exigem grande adaptabilidade e sistemas de proteção eficientes. Entre esses sistemas encontra-se um operon arsRBC de resistência ao arsênio, metaloide danoso à saúde humana associado a lesões de pele, doenças neurológicas e câncer. O objetivo deste trabalho foi investigar as alterações na expressão proteica de C. violaceum ATCC 12472 na presença do arsenito e caracterizar as diversas proteínas secretadas pela bactéria. As proteínas da C. violaceum foram analisadas por eletroforese bidimensional e espectrometria de massas. A análise proteômica revelou que o arsenito induz um aumento na quantidade das proteínas envolvidas na resposta ao estresse oxidativo, reparo do DNA e metabolismo energético. Entre as proteínas secretadas, foram identificados fatores de virulência (metalopeptidases, colagenase e toxinas), transportadores, proteínas de proteção contra estresses e com potencial aplicação biotecnológica. Os resultados mostraram que a C. violaceum possui um arsenal molecular de adaptação que a torna capaz de conservar suas atividades celulares e provocar lesões em outros organismos.
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background Mental and physical disorders are associated with total disability, but their effects on days with partial disability (i.e. the ability to perform some, but not full-role, functioning in daily life) are not well understood. Aims To estimate individual (i.e. the consequences for an individual with a disorder) and societal effects (i.e. the avoidable partial disability in the society due to disorders) of mental and physical disorders on days with partial disability around the world. Method Respondents from 26 nationally representative samples (n=61 259, age 18+) were interviewed regarding mental and physical disorders, and day-to-day functioning. The Composite International Diagnostic Interview, version 3.0 (CIDI 3.0) was used to assess mental disorders; partial disability (expressed in full day equivalents) was assessed with the World Health Organization Disability Assessment Schedule in the CIDI 3.0. Results Respondents with disorders reported about 1.58 additional disability days per month compared with respondents without disorders. At the individual level, mental disorders (especially post-traumatic stress disorder, depression and bipolar disorder) yielded a higher number of days with disability than physical disorders. At the societal level, the population attributable risk proportion due to physical and mental disorders was 49% and 15% respectively. Conclusions Mental and physical disorders have a considerable impact on partial disability, at both the individual and at the societal level. Physical disorders yielded higher effects on partial disability than mental disorders.
Resumo:
Background: Studies on functional capacity in community-dwelling older people have shown associations between declines in instrumental activities of daily living (IADL) and several factors. Among these, age has been the most consistently related to functional capacity independent of other variables. We aimed at evaluating the performance of a sample of healthy and cognitively intact Brazilian older people on activities of daily living and to analyze its relation to social-demographic variables. Methods: We conducted a secondary analysis of data collected for previous epidemiological studies with community-dwelling subjects aged 60 years or more. We selected subjects who did not have dementia or depression, and with no history of neurological diseases, heart attack, HIV, hepatitis or arthritis (n = 1,111). Functional capacity was assessed using the Brazilian version of the Older American Resources and Services Questionnaire (BOMFAQ). ADL performance was analyzed according to age, gender, education, and marital status (Pearson's chi(2), logistic regression). Results: IADL difficulties were present in our sample, especially in subjects aged 80 years or more, with lower levels of education, or widowed. The logistic regression analysis results indicated that "higher age" and "lower education" (p <= 0.001) remained significantly associated with IADL difficulty. Conclusions: Functional decline was present in older subjects even in the absence of medical conditions and cognitive impairment. Clinicians and researchers could benefit from knowing what to expect from older people regarding IADL performance in the absence of medical conditions.
Resumo:
An increasing number of genes required for mitochondrial biogenesis, dynamics, or function have been found to be mutated in metabolic disorders and neurological diseases such as Leigh Syndrome. In a forward genetic screen to identify genes required for neuronal function and survival in Drosophila photoreceptor neurons, we have identified mutations in the mitochondrial methionyl-tRNA synthetase, Aats-met, the homologue of human MARS2. The fly mutants exhibit age-dependent degeneration of photoreceptors, shortened lifespan, and reduced cell proliferation in epithelial tissues. We further observed that these mutants display defects in oxidative phosphorylation, increased Reactive Oxygen Species (ROS), and an upregulated mitochondrial Unfolded Protein Response. With the aid of this knowledge, we identified MARS2 to be mutated in Autosomal Recessive Spastic Ataxia with Leukoencephalopathy (ARSAL) patients. We uncovered complex rearrangements in the MARS2 gene in all ARSAL patients. Analysis of patient cells revealed decreased levels of MARS2 protein and a reduced rate of mitochondrial protein synthesis. Patient cells also exhibited reduced Complex I activity, increased ROS, and a slower cell proliferation rate, similar to Drosophila Aats-met mutants.