351 resultados para NADH
Resumo:
Stable lipid film was made by casting dipalmitoylphosphatidylcholine (DPPC) and rutin onto the surface of a glassy carbon (GC) electrode. The electrochemical behavior of rutin in the DPPC film was studied. The modified electrode coated with rutin gave quasi-reversible reduction-oxidation peak on cyclic voltammogram in the phosphate buffer (pH 7.4). The peak current did not decrease apparently after stored at 4 degreesC for 8 hours in refrigerator. This model of biological membrane was used to investigate the oxidation of dihydronicotinamide adenine dinucleotide (NADH) by rutin. Rutin in the film acts as a mediator. The modified electrode shows a great enhancement and the anodic peak potential was reduced by about 220 mV in the oxidation of 5 X 10(-3) mol L-1 NADN compared with that obtained at a bare glassy carbon electrode. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Stable lipid film was made by casting lipid in chloroform onto a glassy carbon electrode. This model of a biological membrane was used to investigate the oxidation of dihydronicotinamide adenine dinucleotide (NADH) by dopamine. After this electrode had been immersed in dopamine solution for 10 h, it was found that some dopamine had been incorporated in the film. The cyclic voltammogram was obtained for the oxidation of 2.0 X 10(-3) mol 1(-1) NADH with dopamine incorporated in the films. All electrochemical experiments were performed in 0.005 mol 1(-1) phosphate buffer (pH 7.0) containing 0.1 mol 1(-1) NaCl without oxygen. The oxidation current increased gradually with successive sweeps and reached steady state. It was a different phenomenon from previous results. The anodic overpotential was reduced by about 130 mV compared with that obtained at a bare glassy carbon electrode. The diffusion coefficient for 2.0 X 10(-3) mol 1(-1) NADH was 6.7 X 10(-6) cm(2) s(-1). (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The electrocatalytic oxidation of NADH by ferrocene derivatives and the influence of complexation with beta-cyclodextrin (beta-CD) were investigated at a microdisk electrode in a buffer solution. The cyclic voltammetric behavior of the ferrocene derivatives on the microdisk electrode was used to determine the electron-transfer rate constant from NADH to the ferricinium species. The heterogeneous rate constants and the diffusion coefficient of ferrocene derivatives were determined with the microdisk electrode. The effect of temperature and pH on the electrocatalytic oxidation of NADH were assessed.
Resumo:
用微盘电极研究了二茂铁衍生物的电化学行为及电催化氧化二氢烟酰胺腺嘌吟二核苷酸(NADH)。用微电极测定了二茂铁衍生物(磺酸基二茂铁,乙酰基二茂铁,羧酸基二茂铁,α-羟乙基二茂铁,α,α'-二经乙基二茂铁)的扩散系数(分别为3.4×10 ̄(-6),6.9×10 ̄(-6),1.7×10 ̄(-6).6.2×10 ̄(-7),1.5×10 ̄(-6)cm ̄2/s)及乙酞基二茂铁电催化氧化NADH的催化速率常数(4.68×10 ̄3(mol/L) ̄(-1))。探讨了温度、pH及β-环糊精的络合效应对催化反应的影响。
Resumo:
The proton-translocating NADH:ubiquinone oxidoreductase (complex I) has been purified from Aquifex aeolicus, a hyperthermophilic eubacterium of known genome sequence. The purified detergent solubilized enzyme is highly active above 50 degreesC. The specific activity for electron transfer from NADH to decylubiquinone is 29 U/mg at 80 degreesC. The A. aeolicus complex I is completely sensitive to rotenone and 2-n-decyl-quinazoline-4-yl-amine. SDS polyacrylamide gel electrophoresis shows that it may contain up to 14 subunits. N-terminal amino acid sequencing of the bands indicates the presence of a stable subcomplex, which is composed of subunits E, F, and G. The isolated complex is highly stable and active in a temperature range from 50 to 90 degreesC, with a half-life of about 10 h at 80 degreesC. The activity shows a linear Arrhenius plot at 50-85 degreesC with an activation energy at 31.92 J/mol K. Single particle electron microscopy shows that the A. aeolicus complex I has the typical L-shape. However, visual inspection of averaged images reveals many more details in the external arm of the complex than has been observed for complex I from other sources. In addition, the angle (90degrees) between the cytoplasmic peripheral arm and the membrane intrinsic arm of the complex appears to be invariant.
Resumo:
In 1943, the first description of familial idiopathic methemoglobinemia in the United Kingdom was reported in 2 members of one family. Five years later, Quentin Gibson (then of Queen's University, Belfast, Ireland) correctly identified the pathway involved in the reduction of methemoglobin in the family, thereby describing the first hereditary trait involving a specific enzyme deficiency. Recessive congenital methemoglobinemia (RCM) is caused by a deficiency of reduced nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase. One of the original propositi with the type 1 disorder has now been traced. He was found to be a compound heterozygote harboring 2 previously undescribed mutations in exon 9, a point mutation Gly873Ala predicting a Gly291Asp substitution, and a 3-bp in-frame deletion of codon 255 (GAG), predicting loss of glutamic acid. A brother and a surviving sister are heterozygous; each bears one of the mutations. Thirty-three different mutations have now been recorded for RCM. The original authors' optimism that RCM would provide material for future genetic studies has been amply justified.
Resumo:
The mechanism of energy converting NADH:ubiquinone oxidoreductase (complex 1) is Still unknown. A current controversy centers around the question whether electron transport of complex I is always linked to vectorial proton translocation or whether in some organisms the enzyme pumps sodium ions instead. To develop better experimental tools to elucidate its mechanism, we have reconstituted the affinity purified enzyme into proteoliposomes and monitored the generation of Delta pH and Delta psi. We tested several detergents to solubilize the asolectin used for liposome formation. Tightly coupled proteoliposomes containing highly active complex I were obtained by detergent removal with BioBeads after total solubilization or the phospholipids with n-octyl-beta-D-glucopyranoside. We have used dyes to monitor the formation of the two components of the proton motive force, Delta pH and Delta psi, across the liposomal membrane, and analyzed the effects of inhibitors, uncouplers and ionophores on this process. We show that electron transfer of complex I of the lower eukaryote Y. lipolytica is clearly linked to proton translocation. While this study was not specifically designed to demonstrate possible additional sodium translocating properties of complex 1, we did not find indications for primary or secondary Na+ translocation by Y lipolytica complex I. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Generation of reactive oxygen species (ROS) is increasingly recognized as an important cellular process involved in numerous physiological and pathophysiological processes. Complex I ( NADH: ubiquinone oxidoreductase) is considered as one of the major sources of ROS within mitochondria. Yet, the exact site and mechanism of superoxide production by this large membrane-bound multiprotein complex has remained controversial. Here we show that isolated complex 1 from Yarrowia lipolytica forms superoxide at a rate of 0.15% of the rate measured for catalytic turnover. Superoxide production is not inhibited by ubiquinone analogous inhibitors. Because mutant complex I lacking a detectable iron-sulfur cluster N2 exhibited the same rate of ROS production, this terminal redox center could be excluded as a source of electrons. From the effect of different ubiquinone derivatives and pH on this side reaction of complex I we concluded that oxygen accepts electrons from FMNH2 or FMN semiquinone either directly or via more hydrophilic ubiquinone derivatives.
Resumo:
Alternative NADH dehydrogenases (NADH:ubiquinone oxidoreductases) are single subunit respiratory chain enzymes found in plant and fungal mitochondria and in many bacteria. It is unclear how these peripheral membrane proteins interact with their hydrophobic substrate ubiquinone. Known inhibitors of alternative NADH dehydrogenases bind with rather low affinities. We have identified 1-hydroxy-2-dodecyl-4(1H)quinolone as a high affinity inhibitor of alternative NADH dehydrogenase from Yarrowia lipolytica. Using this compound, we have analyzed the bisubstrate and inhibition kinetics for NADH and decylubiquinone. We found that the kinetics of alternative NADH dehydrogenase follow a ping-pong mechanism. This suggests that NADH and the ubiquinone headgroup interact with the same binding pocket in an alternating fashion.
Resumo:
Nitochondrial NADH:ubiquinone-reductase (Complex I) catalyzes proton translocation into inside-out submitochondrial particles. Here we describe a method for determining the stoichiometric ratio (H) over right arrow (+)/2e(-) (n) for the coupled reaction of NADH oxidation by the quinone accepters. Comparison of the initial rates of NADH oxidation and alkalinization of the surrounding medium after addition of small amounts of NADH to coupled particles in the presence of Q(1) gives the value of n = 4. Thermally induced deactivation of Complex I [1, 2] results in complete inhibition of the NADH oxidase reaction but only partial inhibition of the NADH:Q(1)-reductase reaction. N-Ethylmaleimide (NEM) prevents reactivation and thus completely blocks the thermally deactivated enzyme. The residual NADH:Q(1)-reductase activity of the deactivated, NEM-treated enzyme is shown to be coupled with the transmembraneous proton translocation (n = 4). Thus, thermally induced deactivation of Complex 1 as well as specific inhibitors of the endogenous ubiquinone reduction (rotenone, piericidin A) do not inhibit the proton translocating activity of the enzyme.
Resumo:
The electrochemistry of nicotinamide adenine dinucleotide (NADH) in its reduced form was examined in two room-temperature ionic liquids (RTILs): 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide ([C(2)mim][NTf2]) and 1-butyl-3-methylimidazolium hexafluorophos-phate ([C(4)mim][PF6]). NADH oxidation has previously been studied in aqueous solution where it follows the pathway: one-electron oxidation to the NADH(center dot+) radical cation, deprotonation to produce the neutral NAD(center dot) radical, then oxidation to the NAD(+) cation. The electrochemistry of NADH was examined in [C(2)mim][NTf2] and [C(4)mim][PF6] at the bare Pt electrode (10 mu m diameter): In [C(2)mim][NTf2], no oxidation was observed; in [C(4)mim][PF6], an oxidative signal was observed, which likely followed the pathway described above, where upon formation of the NADH(center dot+) radical cation, the [PF6](-) anion (unlike the [NTf2](-) anion) reacts with the proton to form HPF6, which decomposes. This demonstrates the tunability of RTILs, whereby the choice of one anion in an RTIL over another can promote a reaction. Poly(vinylferrocene) (PVF) was studied as a mediator for the NADH detection in both RTILs to attempt to lower the potential of NADH detection. The Pt electrode was modified with PVF, and the oxidation of PVF to PVF+ was observed in [C(2)mim][NTf2] and [C(4)mim][PF6], but no mediation of the NADH oxidation was observed.