853 resultados para Muscular Atrophy
Resumo:
Esta Dissertação irá apresentar a utilização de técnicas de controle nãolinear, tais como o controle adaptativo e robusto, de modo a controlar um sistema de Eletroestimulação Funcional desenvolvido pelo laboratório de Engenharia Biomédica da COPPE/UFRJ. Basicamente um Eletroestimulador Funcional (Functional Electrical Stimulation FES) se baseia na estimulação dos nervos motores via eletrodos cutâneos de modo a movimentar (contrair ou distender) os músculos, visando o fortalecimento muscular, a ativação de vias nervosas (reinervação), manutenção da amplitude de movimento, controle de espasticidade muscular, retardo de atrofias e manutenção de tonicidade muscular. O sistema utilizado tem por objetivo movimentar os membros superiores através do estímulo elétrico de modo a atingir ângulos-alvo pré-determinados para a articulação do cotovelo. Devido ao fato de não termos conhecimento pleno do funcionamento neuro-motor humano e do mesmo ser variante no tempo, não-linear, com parâmetros incertos, sujeito a perturbações e completamente diferente para cada indivíduo, se faz necessário o uso de técnicas de controle avançadas na tentativa de se estabilizar e controlar esse tipo de sistema. O objetivo principal é verificar experimentalmente a eficácia dessas técnicas de controle não-linear e adaptativo em comparação às técnicas clássicas, de modo a alcançar um controle mais rápido, robusto e que tenha um desempenho satisfatório. Em face disso, espera-se ampliar o campo de utilização de técnicas de controle adaptativo e robusto, além de outras técnicas de sistemas inteligentes, tais como os algoritmos genéticos, provando que sua aplicação pode ser efetiva no campo de sistemas biológicos e biomédicos, auxiliando assim na melhoria do tratamento de pacientes envolvidos nas pesquisas desenvolvidas no Laboratório de Engenharia Biomédica da COPPE/UFRJ.
Resumo:
ANTECEDENTES: El aislamiento de células fetales libres o ADN fetal en sangre materna abre una ventana de posibilidades diagnósticas no invasivas para patologías monogénicas y cromosómicas, además de permitir la identificación del sexo y del RH fetal. Actualmente existen múltiples estudios que evalúan la eficacia de estos métodos, mostrando resultados costo-efectivos y de menor riesgo que el estándar de oro. Este trabajo describe la evidencia encontrada acerca del diagnóstico prenatal no invasivo luego de realizar una revisión sistemática de la literatura. OBJETIVOS: El objetivo de este estudio fue reunir la evidencia que cumpla con los criterios de búsqueda, en el tema del diagnóstico fetal no invasivo por células fetales libres en sangre materna para determinar su utilidad diagnóstica. MÉTODOS: Se realizó una revisión sistemática de la literatura con el fin de determinar si el diagnóstico prenatal no invasivo por células fetales libres en sangre materna es efectivo como método de diagnóstico. RESULTADOS: Se encontraron 5,893 artículos que cumplían con los criterios de búsqueda; 67 cumplieron los criterios de inclusión: 49.3% (33/67) correspondieron a estudios de corte transversal, 38,8% (26/67) a estudios de cohortes y el 11.9% (8/67) a estudios casos y controles. Se obtuvieron resultados de sensibilidad, especificidad y tipo de prueba. CONCLUSIÓN: En la presente revisión sistemática, se evidencia como el diagnóstico prenatal no invasivo es una técnica feasible, reproducible y sensible para el diagnóstico fetal, evitando el riesgo de un diagnóstico invasivo.
Resumo:
The transcription factor REST is a key suppressor of neuronal genes in non-neuronal tissues. REST has been shown to suppress pro-neuronal microRNAs in neural progenitors indicating that REST-mediated neurogenic suppression may act in part via microRNAs. We used neural differentiation of Rest-null mouse ESC to identify dozens of microRNAs regulated by REST during neural development. One of the identified microRNAs, miR-375, was upregulated during human spinal motor neuron development. We found that miR-375 facilitates spinal motor neurogenesis by targeting the cyclin kinase CCND2 and the transcription factor PAX6. Additionally, miR-375 inhibits the tumor suppressor p53 and protects neurons from apoptosis in response to DNA damage. Interestingly, motor neurons derived from a spinal muscular atrophy patient displayed depressed miR-375 expression and elevated p53 protein levels. Importantly, SMA motor neurons were significantly more susceptible to DNA damage induced apoptosis suggesting that miR-375 may play a protective role in motor neurons.
Resumo:
Amyotrophic lateral sclerosis (ALS) is an incurable neuromuscular disease that leads to a profound loss of life quality and premature death. Around 10% of the cases are inherited and ALS8 is an autosomal dominant form of familial ALS caused by mutations in the vamp-associated protein B/C (VAPB) gene. The VAPB protein is involved in many cellular processes and it likely contributes to the pathogenesis of other forms of ALS besides ALS8. A number of successful drug tests in ALS animal models could not be translated to humans underscoring the need for novel approaches. The induced pluripotent stem cells (iPSC) technology brings new hope, since it can be used to model and investigate diseases in vitro. Here we present an additional tool to study ALS based on ALS8-iPSC. Fibroblasts from ALS8 patients and their non-carrier siblings were successfully reprogrammed to a pluripotent state and differentiated into motor neurons. We show for the first time that VAPB protein levels are reduced in ALS8-derived motor neurons but, in contrast to over-expression systems, cytoplasmic aggregates could not be identified. Our results suggest that optimal levels of VAPB may play a central role in the pathogenesis of ALS8, in agreement with the observed reduction of VAPB in sporadic ALS.
Resumo:
Bacurau AV, Jardim MA, Ferreira JC, Bechara LR, Bueno CR Jr, Alba-Loureiro TC, Negrao CE, Casarini DE, Curi R, Ramires PR, Moriscot AS, Brum PC. Sympathetic hyperactivity differentially affects skeletal muscle mass in developing heart failure: role of exercise training. J Appl Physiol 106: 1631-1640, 2009. First published January 29, 2009; doi:10.1152/japplphysiol.91067.2008.-Sympathetic hyperactivity (SH) is a hallmark of heart failure (HF), and several lines of evidence suggest that SH contributes to HF-induced skeletal myopathy. However, little is known about the influence of SH on skeletal muscle morphology and metabolism in a setting of developing HF, taking into consideration muscles with different fiber compositions. The contribution of SH on exercise tolerance and skeletal muscle morphology and biochemistry was investigated in 3- and 7-mo-old mice lacking both alpha(2A)- and alpha(2C)-adrenergic receptor subtypes (alpha(2A)/alpha(2C)ARKO mice) that present SH with evidence of HF by 7 mo. To verify whether exercise training (ET) would prevent skeletal muscle myopathy in advanced-stage HF, alpha(2A)/alpha(2C)ARKO mice were exercised from 5 to 7 mo of age. At 3 mo, alpha(2A)/alpha(2C)ARKO mice showed no signs of HF and preserved exercise tolerance and muscular norepinephrine with no changes in soleus morphology. In contrast, plantaris muscle of alpha(2A)/alpha(2C)ARKO mice displayed hypertrophy and fiber type shift (IIA -> IIX) paralleled by capillary rarefaction, increased hexokinase activity, and oxidative stress. At 7 mo, alpha(2A)/alpha(2C)ARKO mice displayed exercise intolerance and increased muscular norepinephrine, muscular atrophy, capillary rarefaction, and increased oxidative stress. ET reestablished alpha(2A)/alpha(2C)ARKO mouse exercise tolerance to 7-mo-old wild-type levels and prevented muscular atrophy and capillary rarefaction associated with reduced oxidative stress. Collectively, these data provide direct evidence that SH is a major factor contributing to skeletal muscle morphological changes in a setting of developing HF. ET prevented skeletal muscle myopathy in alpha(2A)/alpha(2C)ARKO mice, which highlights its importance as a therapeutic tool for HF.
Resumo:
In this paper the authors describe three cases of multicore myopathy in the same family. Case J was a white 77-year-old patient with proximal muscular atrophy and weakness, global hypotonia and global hypoactive deep tendon reflexes. Motor and sensory conduction studies were normal in all limbs. EMG examination showed a myopathic pattern with frequent spontaneous activity consisting of fibrillations and positive sharp waves. Histochemical reactions showed typical oxidative alterations of multicore myopathy. Cases 2 and 3 were the son and the daughter of case 1 respectively. They were both non-symptomatic patients with minimal EMG and histochemical alterations. These three patients illustrated the great clinical variability of this condition.
Resumo:
In this work 3 new cases of suprascapular nerve mononeuropathy are described. ENMG diagnosis criteria were: a) normal sensory conduction studies of the ipsolateral ulnar, median and radial nerves; b) bilateral suprascapular nerve latencies with bilateral compound muscle action potential, obtained from the infraspinatus muscle with symmetrical techniques; and c) abnormal neurogenic infraspinatus muscle electromyographic findings, coexisting with normal electromyographical data of the ipsolateral deltoideus and supraspinatus muscles. These 3 cases of suprascapular mononeurpathy were found in 6,080 ENMG exams from our University Hospital. For us this mononeuropathy is rare with a 0.05% occurrence.
Resumo:
Heart failure (HF) is characterized by a skeletal muscle myopathy with increased expression of fast myosin heavy chains (MHCs). The skeletal muscle-specific molecular regulatory mechanisms controlling MHC expression during HF have not been described. Myogenic regulatory factors (MRFs), a family of transcriptional factors that control the expression of several skeletal muscle-specific genes, may be related to these alterations. This investigation was undertaken in order to examine potential relationships between MRF mRNA expression and MHC protein isoforms in Wistar rat skeletal muscle with monocrotaline-induced HF. We studied soleus (Sol) and extensor digitorum longus (EDL) muscles from both HF and control Wistar rats. MyoD, myogenin and MRF4 contents were determined using reverse transcription-polymerase chain reaction while MHC isoforms were separated using polyacrylamide gel electrophoresis. Despite no change in MHC composition of Wistar rat skeletal muscles with HF, the mRNA relative expression of MyoD in Sol and EDL muscles and that of MRF4 in Sol muscle were significantly reduced, whereas myogenin was not changed in both muscles. This down-regulation in the mRNA relative expression of MRF4 in Sol was associated with atrophy in response to HF while these alterations were not present in EDL muscle. Taken together, our results show a potential role for MRFs in skeletal muscle myopathy during HF. © 2006 Blackwell Science Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Legg-Calvé-Perthes disease is a non-inflammatory aseptic necrosis of the head of the femur that is found in both young animals and humans before the gap in the femur head closes. In the fields of both human and veterinary medicine the cause of this condition is not known for certain. Various factors have been put forward in the literature as being responsible for the incidence of this condition such as: abnormalities in coagulation, changes in blood flow in the arteries, a septic obstruction in the draining of the epiphysis or the upper parts of the femur, trauma, growth cycle, hyperactivity in a child, genetic influences and dietary factors. Case histories in dogs show that the first stages of the condition progress slowly but that limping or putting weight on the limb worsens at 6 to 8 weeks. Some owners talk about a sharp onset in clinical lameness. Other clinical symptoms may include irritability, loss of appetite and knawing at the hair surrounding the affected hip. In the course of physical examination manipulating the hip joint will cause pain to the animal. The advanced stages of the disease may result in restricted amplitude of movement, muscular atrophy and fracturing. In humans the clinical signs are similar, although progression of the disease is slower so that it can be diagnosed at an earlier stage. In veterinary medicine the diagnosis is, in the main, based on case history, clinical symptoms, physical examination and certain related procedures such as radiography. The various diagnoses include physical trauma and dislocation of the medial patella. In human medicine many people have been correctly diagnosed. Whatsmore, there is a range of related procedures that are virtually not available to veterinary medicine such as magnetic nuclear resonance, that show up necroses with great clarity before radiography and cintilography do, and is considered... (Complete abstract click electronic access below)
Resumo:
Here, we describe a female patient with autism spectrum disorder and dysmorphic features that harbors a complex genetic alteration, involving a de novo balanced translocation t(2;X)(q11;q24), a 5q11 segmental trisomy and a maternally inherited isodisomy on chromosome 5. All the possibly damaging genetic effects of such alterations are discussed. In light of recent findings on ASD genetic causes, the hypothesis that all these alterations might be acting in orchestration and contributing to the phenotype is also considered. (C) 2012 Wiley Periodicals, Inc.
Resumo:
Pontocerebellar hypoplasia with spinal muscular atrophy, also known as PCH1, is a group of autosomal recessive disorders characterized by generalized muscle weakness and global developmental delay commonly resulting in early death. Gene defects had been discovered only in single patients until the recent identification of EXOSC3 mutations in several families with relatively mild course of PCH1. We aim to genetically stratify subjects in a large and well-defined cohort to define the clinical spectrum and genotype-phenotype correlation.
Resumo:
Many diseases affect pre-mRNA splicing, and alternative splicing is a major source of proteome diversity and an important mechanism for modulating gene expression. The ability to regulate a specific splicing event is therefore desirable; for example, to understand splicing-associated pathologies. We have developed methods based on modified U7 snRNAs, which allow us to induce efficient skipping or inclusion of selected exons. Here, we have adapted these U7 tools to a regulatable system that relies on a doxycycline-sensitive version of the Kruppel-associated box (KRAB)/KAP1 transcriptional silencing. Co-transduction of target cells with two lentiviral vectors, one carrying the KRAB protein and the other the regulatable U7 cassette, allows a tight regulation of the modified U7 snRNA. No leakage is observed in the repressed state, whereas full induction can be obtained with doxycycline in ng ml(-1) concentrations. Only a few days are necessary for a full switch, and the induction/repression can be repeated over several cycles without noticeable loss of control. Importantly, the U7 expression correlates with splicing correction, as shown for the skipping of an aberrant beta-globin exon created by a thalassaemic mutation and the promotion of exon 7 inclusion in the human SMN2 gene, an important therapeutic target for spinal muscular atrophy.
Resumo:
Coilin is the signature protein of the Cajal body (CB), a nuclear suborganelle involved in the biogenesis of small nuclear ribonucleoproteins (snRNPs). Newly imported Sm-class snRNPs are thought to traffic through CBs before proceeding to their final nuclear destinations. Loss of coilin function in mice leads to significant viability and fertility problems. Coilin interacts directly with the spinal muscular atrophy (SMA) protein via dimethylarginine residues in its C-terminal domain. Although coilin hypomethylation results in delocalization of survival of motor neurons (SMN) from CBs, high concentrations of snRNPs remain within these structures. Thus, CBs appear to be involved in snRNP maturation, but factors that tether snRNPs to CBs have not been described. In this report, we demonstrate that the coilin C-terminal domain binds directly to various Sm and Lsm proteins via their Sm motifs. We show that the region of coilin responsible for this binding activity is separable from that which binds to SMN. Interestingly, U2, U4, U5, and U6 snRNPs interact with the coilin C-terminal domain in a glutathione S-transferase (GST)-pulldown assay, whereas U1 and U7 snRNPs do not. Thus, the ability to interact with free Sm (and Lsm) proteins as well as with intact snRNPs, indicates that coilin and CBs may facilitate the modification of newly formed snRNPs, the regeneration of 'mature' snRNPs, or the reclamation of unassembled snRNP components.
Resumo:
Spinal muscular atrophy (SMA) is a childhood fatal motor neuron disease caused by mutations in the Survival Motor Neuron 1 (SMN1) gene, currently without effective treatment. One possible therapeutic approach is the use of antisense oligonucleotides (ASOs) to redirect the splicing of a paralogous gene, SMN2, to increase the production of functional SMN protein. A range of ASOs with different chemical properties is suitable for these applications, including a morpholino (MO) variant, which has a particularly excellent safety, and efficacy profile. We used a 25- nt MO oligomer sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D(-10-34)) with superior efficacy to previously described sequences also in transgenic SMA Δ7 mice. The combined local and systemic administration of MO (bare or conjugated to octa-guanidine) is necessary to increase full-length SMN expression, leading to robust neuropathological features improvement and survival rescue. Additionally, several snRNA levels that are dysregulated in SMA mice could be restored by MO treatment. These results demonstrate that MO therapy is efficacious and can result in phenotypic rescue. These data provide important insights for the development of therapeutic strategies in SMA patients.