Eficacia del diagnóstico prenatal no invasivo por células fetales libres en sangre materna 1990-2014. Revisión sistemática
Contribuinte(s) |
Amaya Amaya, Jenny |
---|---|
Data(s) |
27/05/2015
|
Resumo |
ANTECEDENTES: El aislamiento de células fetales libres o ADN fetal en sangre materna abre una ventana de posibilidades diagnósticas no invasivas para patologías monogénicas y cromosómicas, además de permitir la identificación del sexo y del RH fetal. Actualmente existen múltiples estudios que evalúan la eficacia de estos métodos, mostrando resultados costo-efectivos y de menor riesgo que el estándar de oro. Este trabajo describe la evidencia encontrada acerca del diagnóstico prenatal no invasivo luego de realizar una revisión sistemática de la literatura. OBJETIVOS: El objetivo de este estudio fue reunir la evidencia que cumpla con los criterios de búsqueda, en el tema del diagnóstico fetal no invasivo por células fetales libres en sangre materna para determinar su utilidad diagnóstica. MÉTODOS: Se realizó una revisión sistemática de la literatura con el fin de determinar si el diagnóstico prenatal no invasivo por células fetales libres en sangre materna es efectivo como método de diagnóstico. RESULTADOS: Se encontraron 5,893 artículos que cumplían con los criterios de búsqueda; 67 cumplieron los criterios de inclusión: 49.3% (33/67) correspondieron a estudios de corte transversal, 38,8% (26/67) a estudios de cohortes y el 11.9% (8/67) a estudios casos y controles. Se obtuvieron resultados de sensibilidad, especificidad y tipo de prueba. CONCLUSIÓN: En la presente revisión sistemática, se evidencia como el diagnóstico prenatal no invasivo es una técnica feasible, reproducible y sensible para el diagnóstico fetal, evitando el riesgo de un diagnóstico invasivo. Ninguno BACKGROUND: Isolation of free fetal cells or fetal DNA in maternal blood opens a window of possibilities for the noninvasive diagnosisof monogenic and chromosomal disorders, andin addition it allows the identification of fetal sex and RH. Currently, there are many studies that evaluate the effectiveness of these methods, showing cost-effective and less risky results than the gold standard. This paper describes the evidence found for noninvasive prenatal diagnosis after conducting a systematic review of the literature. OBJECTIVES: The aim of this study was to collect evidence that meets the search criteria on the matter of noninvasive fetal diagnosis through free fetal cells in maternal blood, to determine its diagnostic utility. METHODS: A systematic literature review was conducted to determine whether noninvasive prenatal diagnosis of fetal cells in maternal free blood is effective as a diagnostic method. RESULTS: 5,893 articles that met the search criteria were found; 67 met the inclusion criteria: 49.3% (33/67) were of cross-sectional studies, 38.8% (26/67) for cohort and 11.9% (8/67) case-control studies. Overall sensitivity, specificity and type of test were obtained. CONCLUSION: In this systematic review, evidence was foundthat noninvasive prenatal diagnosis is a feasible, reproducible and sensitive technique for fetal diagnosis, avoiding the risk of an invasive diagnosis. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
spa |
Publicador |
Facultad de medicina |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
instname:Universidad del Rosario reponame:Repositorio Institucional EdocUR Dey, M., Agarwal, S., & Sharma, S. (2013). NON-INVASIVE PRENATAL DIAGNOSIS: A REVIEW. International Journal of Pharmaceutical Sciences & Research, 4(4). Guibert, J. (2003). Kinetics of SRY gene appearance in maternal serum: detection by real time PCR in early pregnancy after assisted reproductive technique. Human Reproduction, 18(8), 1733–1736. http://doi.org/10.1093/humrep/deg320 Lo, Y. D., Corbetta, N., Chamberlain, P. F., Rai, V., Sargent, I. L., Redman, C. W., & Wainscoat, J. S. (1997). Presence of fetal DNA in maternal plasma and serum. The Lancet, 350(9076), 485-487. Macek Sr, (Ed.) Early Prenatal Diagnosis, Fetal Cells and DNA in the Mother. Karolinum Press, Prague, Czech Republic; 2002: 96–102 Krabchi, K., Gros‐Louis, F., Yan, J., Bronsard, M., Masse, J., Forest, J. C., & Drouin, R. (2001). Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques. Clinical genetics, 60(2), 145-150. LO, Y., TEIN, M., LAU, T., HAINES, C., LEUNG, T., POON, P., et al. (1998). Quantitative Analysis of Fetal DNA in Maternal Plasma and Serum: Implications for Noninvasive Prenatal Diagnosis. The American Journal of Human Genetics, 62(4), 768–775. http://doi.org/10.1086/301800 Hill, M., Finning, K., Martin, P., Hogg, J., Meaney, C., Norbury, G., ... & Chitty, L. S. (2011). Non‐invasive prenatal determination of fetal sex: translating research into clinical practice. Clinical genetics, 80(1), 68-75. Nygren, A. O. H., Dean, J., Jensen, T. J., Kruse, S., Kwong, W., van den Boom, D., & Ehrich, M. (2010). Quantification of fetal DNA by use of methylation-based DNA discrimination. Clinical Chemistry, 56(10), 1627–1635. http://doi.org/10.1373/clinchem.2010.146290 Kimura, M., Hara, M., Itakura, A., Sato, C., Ikebuchi, K., & Ishihara, O. (2011). Fragment size analysis of free fetal DNA in maternal plasma using Y-STR loci and SRY gene amplification. Nagoya journal of medical science, 73(3-4), 129-135. Fuks, A. M., & Hsu, C.-D. (2005). Prenatal Diagnosis using Fetal Genetic Material in Maternal Circulation. Taiwanese Journal of Obstetrics & Gynecology, 44(1), 8–15. http://doi.org/10.1016/S1028-4559(09)60100-5 Group, T. N. P. S. W. (2013). ACOG statement on noninvasive prenatal screening for fetal aneuploidy. Genetics in Medicine, 15(5), 395-398.Medicine Foundation First Trimester Screening Group. Lancet 1998;352:343 Fir Currier R, Wu N, Van Meter K, et al. Integrated and first trimester prenatal screening in California: program implementation and patient choice for follow-up services. Prenat Diag 2012;32: 1077–83. Snijders RJ, Noble P, Sebire N, et al. UK multicentre Project on assessment of risk of trisomy 21 by maternal age and fetal nuchal-translucency thickness at 10–14 weeks of gestation. Fetal Medicine Foundation First Trimester Screening Group. Lancet 1998;352:343–6. Ball, R. H., Caughey, A. B., Malone, F. D., Nyberg, D. A., Comstock, C. H., Saade, G. R., ... & D'Alton, M. E. (2007). First-and second-trimester evaluation of risk for Down syndrome. Obstetrics & Gynecology, 110(1), 10-17. Norton, M. E., Brar, H., Weiss, J., Karimi, A., Laurent, L. C., Caughey, A. B., ... & Song, K. (2012). Non-Invasive Chromosomal Evaluation (NICE) Study: results of a multicenter prospective cohort study for detection of fetal trisomy 21 and trisomy 18. American journal of obstetrics and gynecology, 207(2), 137-e1. Ashoor, G., Syngelaki, A., Wagner, M., Birdir, C., & Nicolaides, K. H. (2012). Chromosome-selective sequencing of maternal plasma celltion (NICE) Studrst-trimester detection of trisomy 21 and trisomy 18. American journal of obstetrics and gynecology, 206(4), 322-e1. Ashoor, G., Syngelaki, A., Wagner, M., Birdir, C., & Nicolaides, K. H. (2012). Chromosome-selective sequencing of maternal plasma celltion DNA for first-trimester detection of trisomy 21 and trisomy 18. American journal of obstetrics and gynecology, 206(4), 322-e1. Palomaki, G. E., Kloza, E. M., Lambert-Messerlian, G. M., Haddow, J. E., Neveux, L. M., Ehrich, M., ... & Canick, J. A. (2011). DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genetics in medicine, 13(11), 913-920. Dan, S., Wang, W., Ren, J., Li, Y., Hu, H., Xu, Z., ... & Zhang, X. (2012). Clinical application of massively parallel sequencing‐based prenatal noninvasive fetal trisomy test for trisomies 21 and 18 in 11 105 pregnancies with mixed risk factors. Prenatal diagnosis, 32(13), 1225-1232. Walknowska, J., Conte, F., & Grumbach, M. (1969). Practical and theoretical implications of fetal/maternal lymphocyte transfer. The Lancet, 293(7606), 1119-1122. DataBank Error Page. (n.d.). Retrieved December 13, 2014, from http://databank.worldbank.org/data/views/reports/tableview.aspx, fecha de búsqueda enero 31 de 2015.). Tiene una mortalidad en niños menores de 11.4 por cada 1,000 nacidos para el año 2012 (http://www.asivamosensalud.org/inidicadores/estado-de-salud/grafica.ver/7 Schaeffer, A. J., Chung, J., Heretis, K., Wong, A., Ledbetter, D. H., & Martin, C. L. (2004). Comparative genomic hybridizationa Provincia de Ubaté, Colombia. 015.). Tiene una mortalidad en niños menores de 11.4 por cada 1,000 nacidos para eThe American Journal of Human Genetics, 74(6), 1168-1174. (n.d.). Retrieved December 14, 2014, from http://omim.org/statistics/entry Chen, C. P., Wu, P. C., Lin, C. J., Chern, S. R., Tsai, F. J., Lee, C. C., ... & Wang, W. (2011). Unbalanced reciprocal translocations at amniocentesis. Taiwanese Journal of Obstetrics and Gynecology, 50(1), 48-57. NAZER, J., & CIFUENTES, L. (2011). Estudio epidemiológico global del síndrome de Down. Revista chilena de pediatría, 82(2), 105-112. VILLEGAS, J. B., & OBANDO, F. S. (2008). La carga de la enfermedad genética en Colombia, 1996-2025. Univérsitas Médica, 49(1), 12-28. Páez, P., Suárez-Obando, F., & Zarante, I. (2008). Enfermedades de origen genético en pacientes pediátricos hospitalizados en la Provincia de Ubaté, Colombia. Revista de Salud Pública, 10(3), 414-422. Nassbaum, R., Melness, R., & Willant, H. (n.d.). Capítulo 5. In Principios de citogenética clínica» (Séptima ed., pp. 68-75). Thompson & Thompson. Fact Sheet 8: Autosomal Recessive Inheritance. (n.d.). Retrieved December 14, 2014, from http://www.genetics.edu.au/Publications-and-Resources/Genetics-Fact-Sheets/FactSheet8/view Cystic Fibrosis Mutation Database: Statistics. (n.d.). Retrieved December 10, 2014, from http://www.genet.sickkids.on.ca/cftr/StatisticsPage.html Lay-Son, G., & Repetto, G. (2010). Genética y fibrosis quística: desde el gen CFTR a los factores modificadores. Neumología pediátrica, 5, 4-9. Malambo, D., Gómez, D., Veloza, L., Arbeláez, J., & Gómez, C. (2008). Algunos aspectos hereditarios y ambientales en casos de fibrosis quística en la ciudad de Cartagena (Colombia). Salud Uninorte. Barranquilla (Col), 24, 10-22. Ortigosa, L. (2007). Fibrosis quística. Aspectos diagnósticos. Colombia Médica, 38(1 Supl 1). Dequeker, E., Stuhrmann, M., Morris, M. A., Casals, T., Castellani, C., Claustres, M., ... & Girodon, E. (2009). Best practice guidelines for molecular genetic diagnosis of cystic fibrosis and CFTR-related disorders–updated European recommendations. European journal of human genetics, 17(1), 51-65. Ogino, S., & Wilson, R. B. (2004). Spinal muscular atrophy: molecular genetics and diagnostics. Stewart, H., Wallace, A., McGaughran, J., Mountford, R., & Kingston, H. (1998). Molecular diagnosis of spinal muscular atrophy. Archives of disease in childhood, 78(6), 531-535. Steinberg, M. H., & Adewoye, A. H. (2006). Modifier genes and sickle cell anemia. Current opinion in hematology, 13(3), 131-136. De las Heras, F. S., & Pérez, H. L. (2008, February). [Hemoglobinopathies diagnosed at the University Hospital Ntra. Sra. de Candelaria and its area of reference in Santa Cruz de Tenerife during one year]. In Anales de medicina interna (Madrid, Spain: 1984) (Vol. 25, No. 2, pp. 61-66). Rosero María Jimena, Bermúdez Antonio José. Análisis de hemoglobinopatías en regiones afrocolombianas usando muestras de sangre seca de cordón umbilical. Acta Med Colomb [serial on the Internet]. 2012 Sep [cited 2015 Apr 26] ; 37( 3 ): 117-126. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-24482012000300003&lng=en ACOG Committee on Practice Bulletins. (2007). ACOG Practice Bulletin No. 77: screening for fetal chromosomal abnormalities. Obstet Gynecol, 109, 217-227. Armengol, L., Nevado, J., Serra-Juhé, C., Plaja, A., Mediano, C., García-Santiago, F. A., ...& Pengol, L., Nevado, J., Serra-Juhé, C., Plaja, A., Mediano, C., García-Santiago, F. A., ... al chromosomal abnorHuman genetics, 131(3), 513-523. De los Ángeles Mori, M., Mansilla, E., García-Santiago, F., Vallespín, E., Palomares, M., Martín, R., ...& Nevado, J. (2012). Diagnóstico prenatal y array-hibridación genómica comparada (CGH)(I). Gestaciones de elevado riesgo. Diagnóstico Prenatal, 23(2), 34-48. Sparks AB, Struble CA, Wang ET, et al. Noninvasive prenatal detection and selective analysis of cell-free DNA obtained from maternal blood: evaluation for trisomy 21 and trisomy 18. Am J Obstet Gynecol 2012;206:319.e1–9. Lo, Y. M., Lo, E. S., Watson, N., Noakes, L., Sargent, I. L., Thilaganathan, B., & Wainscoat, J. S. (1996). Two-way cell traffic between mother and fetus: biologic and clinical implications. Blood, 88(11), 4390-4395. Bianchi, D. W., Flint, A. F., Pizzimenti, M. F., Knoll, J. H., & Latt, S. A. (1990). Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proceedings of the National Academy of Sciences, 87(9), 3279-3283. Simpson, J. L., & Elias, S. (1993). Isolating fetal cells from maternal blood: advances in prenatal diagnosis through molecular technology. Jama, 270(19), 2357-2361. Lo, Y. D., & Chiu, R. W. (2007). Prenatal diagnosis: progress through plasma nucleic acids. Nature Reviews Genetics, 8(1), 71-77. Cheung, M. C., Goldberg, J. D., & Kan, Y. W. (1996). Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood. Nature genetics, 14(3), 264-268. Krabchi, K., Gadji, M., Samassekou, O., GrW. (1996). PrenForest, J. C., & Drouin, R. (2006). Quantification of fetal nucleated cells in maternal blood of pregnant women with a male trisomy 21 fetus using molecular cytogenetic techniques. Prenatal diagnosis, 26(1), 28-34. Stroun M, Maurice P, Vasioukhin V, Lyautey J, Lederrey C, Lefort F, Rossier A, Chen XQ and Anker P (2000) The origin and mechanism of circulating DNA. Ann NY Acad Sci906, 161–168. Chen, X. Q., Stroun, M., Magnenat, J. L., Nicod, L. P., Kurt, A. M., Lyautey, J., ... & Anker, P. (1996). Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nature medicine, 2(9), 1033-1035. Wong, I. H., Lo, Y. D., Zhang, J., Liew, C. T., Ng, M. H., Wong, N., ... & Johnson, P. J. (1999). Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer research, 59(1), 71-73. Anker, P., Lefort, F. R. A. N. C. O. I. S., Vasioukhin, V. A. L. E. R. I., Lyautey, J. A. C. Q. U. E. L. I. N. E., Lederrey, C. H. R. I. S. T. I. N. E., Chen, X. Q., ... & Farthing, M. J. (1997). K-ras mutations are found in DNA extracted from the plasma of patients with colorectal cancer. Gastroenterology, 112(4), 1114-1120. Heid, C. A., Stevens, J., Livak, K. J., & Williams, P. M. (1996). Real time quantitative PCR. Genome research, 6(10), 986-994. Lo, Y. D., Corbetta, N., Chamberlain, P. F., Rai, V., Sargent, I. L., Redman, C. W., & Wainscoat, J. S. (1997). Presence of fetal DNA in maternal plasma and serum. The Lancet, 350(9076), 485-487. Lo, Y. D., Tein, M. S., Lau, T. K., Haines, C. J., Leung, T. N., Poon, P. M., ... & Hjelm, N. M. (1998). Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. The American Journal of Human Genetics, 62(4), 768-775. Smid, M., Lagona, F., de Benassuti, L., Ferrari, A., Ferrari, M., & Cremonesi, L. (1999). Evaluation of different approaches for fetal DNA analysis from maternal plasma and nucleated blood cells. Clinical chemistry, 45(9), 1570-1572. Lau, T. K., Chen, F., Pan, X., Pooh, R. K., Jiang, F., Li, Y., ... & Zhang, X. (2012). Noninvasive prenatal diagnosis of common fetal chromosomal aneuploidies by maternal plasma DNA sequencing. Journal of Maternal-Fetal and Neonatal Medicine, 25(8), 1370-1374. Faas, B. H. W., Beuling, E. A., Christiaens, G. M., & von dem Borne, A. K. (1998). Detection of fetal RHD-specific sequences in maternal plasma. The lancet, 352(9135), 1196. Bischoff, F. Z., Nguyen, D. D., Marqutiaens, G. M., & von de, Simpson, J. L., & Elias, S. (1999). Noninvasive determination of fetal RhD status using fetal DNA in maternal serum and PCR. Journal of the Society for Gynecologic Investigation, 6(2), 64-69. Amicucci, P., Gennarelli, M., Novelli, G., & Dallapiccola, B. (2000). Prenatal diagnosis of myotonic dystrophy using fetal DNA obtained from maternal plasma. Clinical Chemistry, 46(2), 301-302. Chen, C. P., Chern, S. R., & Wang, W. (2000). Fetal DNA in maternal plasma: the prenatal detection of a paternally inherited fetal aneuploidy. Prenatal diagnosis, 20(4), 355-357. Lo, Y. D., Lau, T. K., Zhang, J., Leung, T. N., Chang, A. M., Hjelm, N. M., ... & Bianchi, D. W. (1999). Increased fetal DNA concentrations in the plasma of pregnant women carrying fetuses with trisomy 21. Clinical chemistry, 45(10), 1747-1751. van Wijk, I. J., de Hoon, A. C., Jurhawan, R., Tjoa, M. L., Griffioen, S., Mulders, M. A., ... & Oudejans, C. B. (2000). Detection of apoptotic fetal cells in plasma of pregnant women. Clinical chemistry, 46(5), 729-731. Lo, Y. D., Leung, T. N., Tein, M. S., Sargent, I. L., Zhang, J., Lau, T. K., ... & Redman, C. W. (1999). Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clinical chemistry, 45(2), 184-188. Al-Mufti, R., Hambley, H., Albaiges, G., Lees, C., & Nicolaides, K. H. (2000). Increased fetal erythroblasts in women who subsequently develop pre-eclampsia. Human reproduction, 15(7), 1624-1628. Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Golaides, K. H. (2000). Increased fe.. & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Annals of internal medicine, 151(4), W-65. Medicine, O. C. F. E.-B. (2011). CEBM Levels of Evidence Table. The Oxford Levels of Evidence. Whiting, P., Rutjes, A. W., Reitsma, J. B., Bossuyt, P. M., & Kleijnen, J. (2003). The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC medical research methodology, 3(1), 25. Resolución, N. 008430 Del 4 De Octubre De 1993. Ministerio de salud. Driscoll, D. A., & Gross, S. (2009). Prenatal screening for aneuploidy. New England Journal of Medicine, 360(24), 2556-2562. American College of Obstetricians and Gynecologists. (2012). Committee opinion no. 545: Noninvasive prenatal testing for fetal aneuploidy. Obstet Gynecol, 120(6), 1532-1534. Greene, N., Greenland, S., Olsen, J., & Nohr, E. A. (2011). Estimating bias from loss to follow-up in the Danish National Birth Cohort. Epidemiology, 22(6), 815-822. Langer, A., Díaz-Olavarrieta, C., Berdichevsky, K., & Villar, J. (2004). Why is research from developing countries underrepresented in international health literature, and what can be done about it?. Bulletin of the World Health Organization, 82(10), 802-803. Loane, M., Morris, J. K., Addor, M. C., Arriola, L., Budd, J., Doray, B., ... & Dolk, H. (2013). Twenty-year trends in the prevalence of Down syndrome and other trisomies in Europe: impact of maternal age and prenatal screening. European Journal of Human Genetics, 21(1), 27-33. Norwitz, E. R., & Levy, B. (2013). Noninvasive prenatal testing: the future is now. Reviews in obstetrics and gynecology, 6(2), 48. Song, K., Musci, T. J., & Caughey, A. B. (2013). Clinical utility and cost of non-invasive prenatal testing with cfDNA analysis in high-risk women based on a US population. The Journal of Maternal-Fetal & Neonatal Medicine, 26(12), 1180-1185. Wright, C. F., & Burton, H. (2009). The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis. Human reproduction update, 15(1), 139-151. TEME |
Palavras-Chave | #618.2 #Epidemiología #Obstetricia #Embarazo #Prenatal diagnosis, fetal cells, non invasive, systematic review |
Tipo |
info:eu-repo/semantics/bachelorThesis info:eu-repo/semantics/acceptedVersion |