980 resultados para Multiple air vehicles


Relevância:

80.00% 80.00%

Publicador:

Resumo:

To investigate the use of centre of gravity location on reducing cyclic pitch control for helicopter UAV's (unmanned air vehicles) and MAV's (micro air vehicles). Low cyclic pitch is a necessity to implement the swashplateless rotor concept using trailing edge flaps or active twist using current generation low authority piezoceramic actuators. Design/methodology/approach – An aeroelastic analysis of the helicopter rotor with elastic blades is used to perform parametric and sensitivity studies of the effects of longitudinal and lateral center of gravity (cg) movements on the main rotor cyclic pitch. An optimization approach is then used to find cg locations which reduce the cyclic pitch at a given forward speed. Findings – It is found that the longitudinal cyclic pitch and lateral cyclic pitch can be driven to zero at a given forward speed by shifting the cg forward and to the port side, respectively. There also exist pairs of numbers for the longitudinal and lateral cg locations which drive both the cyclic pitch components to zero at a given forward speed. Based on these results, a compromise optimal cg location is obtained such that the cyclic pitch is bounded within ±5° for a BO105 helicopter rotor. Originality/value – The reduction in the cyclic pitch due to helicopter cg location is found to significantly reduce the maximum magnitudes of the control angles in flight, facilitating the swashplateless rotor concept. In addition, the existence of cg locations which drive the cyclic pitches to zero allows for the use of active cg movement as a way to replace the cyclic pitch control for helicopter MAV's.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of collision prediction in dynamic environments appears in several diverse fields, which include robotics, air vehicles, underwater vehicles, and computer animation. In this paper, collision prediction of objects that move in 3-D environments is considered. Most work on collision prediction assumes objects to be modeled as spheres. However, there are many instances of object shapes where an ellipsoidal or a hyperboloid-like bounding box would be more appropriate. In this paper, a collision cone approach is used to determine collision between objects whose shapes can be modeled by general quadric surfaces. Exact collision conditions for such quadric surfaces are obtained in the form of analytical expressions in the relative velocity space. For objects of arbitrary shapes, exact representations of planar sections of the 3-D collision cone are obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Avoidance of collision between moving objects in a 3-D environment is fundamental to the problem of planning safe trajectories in dynamic environments. This problem appears in several diverse fields including robotics, air vehicles, underwater vehicles and computer animation. Most of the existing literature on collision prediction assumes objects to be modelled as spheres. While the conservative spherical bounding box is valid in many cases, in many other cases, where objects operate in close proximity, a less conservative approach, that allows objects to be modelled using analytic surfaces that closely mimic the shape of the object, is more desirable. In this paper, a collision cone approach (previously developed only for objects moving on a plane) is used to determine collision between objects, moving in 3-D space, whose shapes can be modelled by general quadric surfaces. Exact collision conditions for such quadric surfaces are obtained and used to derive dynamic inversion based avoidance strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Detailed investigations on the structural and mechanical properties of the forewing of the cicada were carried out. Measurement of the structures of the wings showed that the thickness of the membrane of each cell and the diameter of each vein were non-uniform in both the longitudinal and transverse directions, and their means were approximately 12.2 and 133.3 mum, respectively. However, the aspect ratios of the wings and the bodies were quite uniform and were approximately equal to 2.98 and 2.13, respectively. Based on the measured thickness, mass and area of the membranes of the cells, the mean density and the mean area density of the wing were approximately 2.3 g cm(-3) and 2.8 x 10(-3) g cm(-2), respectively. In addition, the diameters of the veins of the wings, including the diameters of the holes in the vein of the leading edge, were examined. The mechanical properties of the wing were investigated separately by nanoindentation and tensile testing. The results indicated that the mean Young's modulus, hardness and yield stress of the membranes of the wings were approximately 3.7 Gpa, 0.2 Gpa and 29 Mpa, respectively, and the mean Young's modulus and strength of the veins along the direction of the venation of wings were approximately 1.9 Gpa and 52 Mpa, respectively. Finally, the relevant results were briefly analyzed and discussed, providing a guideline to the biomimetic design of the aerofoil materials of micro air vehicles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Within the low Reynolds number regime at which birds and small air vehicles operate (Re=15,000-500,000), flow is beset with laminar separation bubbles and bubble burst which can lead to loss of lift and early onset of stall. Recent video footage of an eagle's wings in flight reveals an inconspicuous wing feature: the sudden deployment of a row of feathers from the lower surface of the wing to create a leading edge flap. An understanding of the aerodynamic function of this flap has been developed through a series of low speed wind tunnel tests performed on an Eppler E423 aerofoil. Experiments took place at Reynolds numbers ranging from 40000 to 140000 and angles of attack up to 30°. In the lower range of tested Reynolds numbers, application of the flap was found to substantially enhance aerofoil performance by augmenting the lift and limiting the drag at certain incidences. The leading edge flap was determined to act as a transition device at low Reynolds numbers, preventing the formation of separation bubbles and consequently decreasing the speed at which stall occurs during landing and manoeuvring.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Like large insects, micro air vehicles operate at low Reynolds numbers O(1; 000 - 10; 000) in a regime characterized by separated flow and strong vortices. The leading-edge vortex has been identified as a significant source of high lift on insect wings, but the conditions required for the formation of a stably attached leading-edge vortex are not yet known. The waving wing is designed to model the translational phase of an insect wing stroke by preserving the unsteady starting and stopping motion as well as three-dimensionality in both wing geometry (via a finite-span wing) and kinematics (via wing rotation). The current study examines the effect of the spanwise velocity gradient on the development of the leading-edge vortex along the wing as well as the effects of increasing threedimensionalityby decreasing wing aspect ratio from four to two. Dye flow visualization and particle image velocimetry reveal that the leading-edge vortices that form on a sliding or waving wing have a very high aspect ratio. The structure of the flow is largely two-dimensional on both sliding and waving wings and there is minimal interaction between the leading-edge vortices and the tip vortex. Significant spanwise flow was observed on the waving wing but not on the sliding wing. Despite the increased three-dimensionality on the aspect ratio 2 waving wing, there is no evidence of an attached leading-edge vortex and the structure of the flow is very similar to that on the higher-aspect-ratio wing and sliding wing. © Copyright 2010.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Leading edge vortices are considered to be important in generating the high lift coefficients observed in insect flight and may therefore be relevant to micro-air vehicles. A potential flow model of an impulsively started flat plate, featuring a leading edge vortex (LEV) and a trailing edge vortex (TEV) is fitted to experimental data in order to provide insight into the mechanisms that influence the convection of the LEV and to study how the LEV contributes to lift. The potential flow model fits the experimental data best with no bound circulation, which is in accordance with Kelvin's circulation theorem. The lift-to-drag ratio is well approximated by the function 'cot α' for α > 15°, which supports the tentative conclusion that shortly after an impulsive start, at post-stall angles of attack, lift is caused non-circulatory forces and by the action of the LEV as opposed to bound circulation. Copyright © 2012 by C. W. Pitt Ford.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Control laws to synchronize attitudes in a swarm of fully actuated rigid bodies, in the absence of a common reference attitude or hierarchy in the swarm, are proposed in [Smith, T. R., Hanssmann, H., & Leonard, N.E. (2001). Orientation control of multiple underwater vehicles with symmetry-breaking potentials. In Proc. 40th IEEE conf. decision and control (pp. 4598-4603); Nair, S., Leonard, N. E. (2007). Stable synchronization of rigid body networks. Networks and Heterogeneous Media, 2(4), 595-624]. The present paper studies two separate extensions with the same energy shaping approach: (i) locally synchronizing the rigid bodies' attitudes, but without restricting their final motion and (ii) relaxing the communication topology from undirected, fixed and connected to directed, varying and uniformly connected. The specific strategies that must be developed for these extensions illustrate the limitations of attitude control with reduced information. © 2008 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We provide feedback control laws to stabilize formations of multiple, unit speed particles on smooth, convex, and closed curves with definite curvature. As in previous work we exploit an analogy with coupled phase oscillators to provide controls which isolate symmetric particle formations that are invariant to rigid translation of all the particles. In this work, we do not require all particles to be able to communicate; rather we assume that inter-particle communication is limited and can be modeled by a fixed, connected, and undirected graph. Because of their unique spectral properties, the Laplacian matrices of circulant graphs play a key role. The methodology is demonstrated using a superellipse, which is a type of curve that includes circles, ellipses, and rounded rectangles. These results can be used in applications involving multiple autonomous vehicles that travel at constant speed around fixed beacons. ©2006 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

文章研究了基于客户端/服务器(C/S)模式的多水下机器人仿真平台中网络通信的关键技术。文章介绍了该仿真平台的结构和功能,分析了仿真平台的信息流向和通信特点,在此基础上,提出了适合该仿真平台应用的网络通信协议和时钟同步方案,并详细讨论了Windows和QNX两种不同操作系统上的应用程序之间进行网络通信的实现方法。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The results of a finite element computer modelling analysis of a micro-manufactured one-turn magnetic inductor using the software package ANSYS 10.0 are presented. The inductor is designed for a DC-DC converter used in microelectronic devices. It consists of a copper conductor with a rectangular cross-section plated with an insulation layer and a layer of magnetic core. The analysis has focused on the effects of the frequency and the air gaps on the on the inductance values and the Joule losses in the core and conductor. It has been found that an inductor with small multiple air gaps has lower losses than an inductor with a single larger gap

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a low cost RTK-GPS system for localization of unmanned surface vehicles. The system is based on the use of standard low cost L1 band receivers and in the RTKlib open source software library. Mission scenarios with multiple robotic vehicles are addressed as the ones envisioned in the ICARUS search and rescue case where the possibility of having a moving RTK base on a large USV and multiple smaller vehicles acting as rovers in a local communication network allows for local relative localization with high quality. The approach is validated in operational conditions with results presented for moving base scenario. The system was implemented in the SWIFT USV with the ROAZ autonomous surface vehicle acting as a moving base. This setup allows for the performing of a missions in a wider range of environments and applications such as precise 3D environment modeling in contained areas and multiple robot operations.